40,770 research outputs found

    The RFC 75% Program

    Get PDF

    Rectilinear accelerometer possesses self- calibration feature

    Get PDF
    Rectilinear accelerometer operates from an ac source with a phase-sensitive ac voltage output proportional to the applied accelerations. The unit includes an independent circuit for self-test which provides a sensor output simulating an acceleration applied to the sensitive axis of the accelerometer

    Complex Bifurcation from Real Paths

    Get PDF
    A new bifurcation phenomenon, called complex bifurcation, is studied. The basic idea is simply that real solution paths of real analytic problems frequently have complex paths bifurcating from them. It is shown that this phenomenon occurs at fold points, at pitchfork bifurcation points, and at isola centers. It is also shown that perturbed bifurcations can yield two disjoint real solution branches that are connected by complex paths bifurcating from the perturbed solution paths. This may be useful in finding new real solutions. A discussion of how existing codes for computing real solution paths may be trivially modified to compute complex paths is included, and examples of numerically computed complex solution paths for a nonlinear two point boundary value problem, and a problem from fluid mechanics are given

    Adam Smith\u27s Influence on Hegel\u27s Philosophical Writings

    Get PDF

    The temperature dependence of the F band in magnesium oxide

    Get PDF
    The position and width of the F band in magnesium oxide have been measured in the temperature range 4-400 °K. The data have been analysed in terms of the simplest adequate `configuration coordinate' model. The width results give an effective frequency of 7.8 × 10^12 s^-1, which is close to a peak in the phonon density of states and to the value extrapolated from data for the alkali halides. There is evidence that the effective frequency is reduced by about 5% in the excited state of the F centre. The Huang-Rhys factor is about 39, and luminescence is predicted at about 2.4 eV. The band shape indicates the existence of three small absorption bands on the high-energy side of the main F absorption band. These appear to be associated with the F centre, but their nature is not clear

    A nonlinear equation for ionic diffusion in a strong binary electrolyte

    Full text link
    The problem of the one dimensional electro-diffusion of ions in a strong binary electrolyte is considered. In such a system the solute dissociates completely into two species of ions with unlike charges. The mathematical description consists of a diffusion equation for each species augmented by transport due to a self consistent electrostatic field determined by the Poisson equation. This mathematical framework also describes other important problems in physics such as electron and hole diffusion across semi-conductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here we derive a more general theory by exploiting the ratio of Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear integro-differential equation which replaces the classical linear equation for ambipolar diffusion but reduces to it in the appropriate limit. Through numerical integration of the full set of equations it is shown that this nonlinear equation provides a better approximation to the exact solution than the linear equation it replaces.Comment: 4 pages, 1 figur

    Infrared spectrometer calibration mono- chromator study final report

    Get PDF
    Calibration monochromator for measuring quantitative performance of infrared spectrometers used in spac

    On the contact values of the density profiles in an electric double layer using density functional theory

    Full text link
    A recently proposed local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, 582, 16] for the charge profile of an electric double layer is used in conjunction with the existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall, the theoretical results satisfy the second contact value theorem reasonably well, the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.Comment: 10 pages, 8 figure
    corecore