8 research outputs found

    Wire arc additive manufacturing (WAAM) of aluminium alloy AlMg5Mn with energy-reduced gas metal arc welding (GMAW)

    Get PDF
    Large-scale aluminum parts are used in aerospace and automotive industries, due to excellent strength, light weight, and the good corrosion resistance of the material. Additive manufacturing processes enable both cost and time savings in the context of component manufacturing. Thereby, wire arc additive manufacturing (WAAM) is particularly suitable for the production of large volume parts due to deposition rates in the range of kilograms per hour. Challenges during the manufacturing process of aluminum alloys, such as porosity or poor mechanical properties, can be overcome by using arc technologies with adaptable energy input. In this study, WAAM of AlMg5Mn alloy was systematically investigated by using the gas metal arc welding (GMAW) process. Herein, correlations between the energy input and the resulting temperature–time-regimes show the effect on resulting microstructure, weld seam irregularities and the mechanical properties of additively manufactured aluminum parts. Therefore, multilayer walls were built layer wise using the cold metal transfer (CMT) process including conventional CMT, CMT advanced and CMT pulse advanced arc modes. These processing strategies were analyzed by means of energy input, whereby the geometrical features of the layers could be controlled as well as the porosity to area portion to below 1% in the WAAM parts. Furthermore, the investigations show the that mechanical properties like tensile strength and material hardness can be adapted throughout the energy input per unit length significantl

    Reduction of energy input in wire arc additive manufacturing (WAAM) with gas metal arc welding (GMAW)

    Get PDF
    Wire arc additive manufacturing (WAAM) by gas metal arc welding (GMAW) is a suitable option for the production of large volume metal parts. The main challenge is the high and periodic heat input of the arc on the generated layers, which directly affects geometrical features of the layers such as height and width as well as metallurgical properties such as grain size, solidification or material hardness. Therefore, processing with reduced energy input is necessary. This can be implemented with short arc welding regimes and respectively energy reduced welding processes. A highly efficient strategy for further energy reduction is the adjustment of contact tube to work piece distance (CTWD) during the welding process. Based on the current controlled GMAW process an increase of CTWD leads to a reduction of the welding current due to increased resistivity in the extended electrode and constant voltage of the power source. This study shows the results of systematically adjusted CTWD duringWAAM of low-alloyed steel. Thereby, an energy reduction of up to 40% could be implemented leading to an adaptation of geometrical and microstructural features of additively manufactured work pieces

    Production of Topology-optimised Structural Nodes Using Arc-based, Additive Manufacturing with GMAW Welding Process

    Get PDF
    The desire to generate a stress optimised structural node with maximum stability is often coupled with the goal of low manufacturing costs and an adapted and minimal use of material. The complex, three-dimensional free-form structures, which are created by means of topology-optimisation, are only partially suitable for conventional manufacturing. The wire arc additive manufacturing (WAAM), by means of arc welding processes, offer a cost-effective and flexible possibility for the individual production of complex, metallic components. Gas metal arc welding (GMAW) is particularly suitable to produce large-volume, load-bearing structures due to build-up rates of up to 5 kg/h. The generation of strength and stiffness adapted support structures by means of the numerical simulation method of topology-optimisation was investigated in this study to generate topology-optimised structural nodes. The resulting node is transferred into a robot path using CAD/CAM software and manufactured from the filler material G4Si1 using WAAM with the GMAW process. Based on the boundary conditions of the WAAM process, the path planning and thus the manufacturability of the topology-optimised supporting structure nodes is evaluated and verified using a sample structure made of the welding filler material G4Si1. Depending on the path planning, an improvement of the mechanical properties could be achieved, due to changes in t8/5 times

    Development of a highly productive GMAW hot wire process using a two-dimensional arc deflection

    Get PDF
    Gas metal arc welding (GMAW) processes are used in a wide range of applications due to their high productivity and flexibility. Nevertheless, the supplied melting wire electrode leads to a coupling of material and heat input. Therefore, an increase of the melting rate correlates with an increase of the heat input by the arc at the same time. A possibility to separate material and heat input is to use an additional wire, which reduces penetration and worsens the wetting behaviour. Consequently, bead irregularities such as bonding defects or insufficient root weldings can occur. In the context of this article, a controlling system for a two-dimensional magnetic arc deflection is presented, which allows to influence arc position as well as material transfer. The analysed GMAW hot wire process is characterised by high melting rates while also realising a sufficient penetration depth and wetting behaviour

    Directed energy deposition-arc (DED-Arc) and numerical welding simulation as a hybrid data source for future machine learning applications

    Get PDF
    This research presents a hybrid approach to generate sample data for future machine learning applications for the prediction of mechanical properties in directed energy deposition-arc (DED-Arc) using the GMAW process. DED-Arc is an additive manufacturing process which offers a cost-effective way to generate 3D metal parts, due to its high deposition rate of up to 8 kg/h. The mechanical properties additively manufactured wall structures made of the filler material G4Si1 (ER70 S-6) are shown in dependency of the t8/5 cooling time. The numerical simulation is used to link the process parameters and geometrical features to a specific t8/5 cooling time. With an input of average welding power, welding speed and geometrical features such as wall thickness, layer height and heat source size a specific temperature field can be calculated for each iteration in the simulated welding process. This novel approach allows to generate large, artificial data sets as training data for machine learning methods by combining experimental results to generate a regression equation based on the experimentally measured t8/5 cooling time. Therefore, using the regression equations in combination with numerically calculated t8/5 cooling times an accurate prediction of the mechanical properties was possible in this research with an error of only 2.6%. Thus, a small set of experimentally generated data set allows to achieve regression equations which enable a precise prediction of mechanical properties. Moreover, the validated numerical welding simulation model was suitable to achieve an accurate calculation of the t8/5 cooling time, with an error of only 0.3%

    Reduction of Energy Input in Wire Arc Additive Manufacturing (WAAM) with Gas Metal Arc Welding (GMAW)

    No full text
    Wire arc additive manufacturing (WAAM) by gas metal arc welding (GMAW) is a suitable option for the production of large volume metal parts. The main challenge is the high and periodic heat input of the arc on the generated layers, which directly affects geometrical features of the layers such as height and width as well as metallurgical properties such as grain size, solidification or material hardness. Therefore, processing with reduced energy input is necessary. This can be implemented with short arc welding regimes and respectively energy reduced welding processes. A highly efficient strategy for further energy reduction is the adjustment of contact tube to work piece distance (CTWD) during the welding process. Based on the current controlled GMAW process an increase of CTWD leads to a reduction of the welding current due to increased resistivity in the extended electrode and constant voltage of the power source. This study shows the results of systematically adjusted CTWD during WAAM of low-alloyed steel. Thereby, an energy reduction of up to 40% could be implemented leading to an adaptation of geometrical and microstructural features of additively manufactured work pieces

    In Situ Production of Titanium Aluminides during Wire Arc Additive Manufacturing with Hot-Wire Assisted GMAW Process

    Get PDF
    As part of a feasibility study, an alternative production process for titanium aluminides was investigated. This process is based on in situ alloying by means of a multi-wire technique in the layer-wise additive manufacturing process. Thereby, gas metal arc welding (GMAW) was combined with additional hot-wire feeding. By using two separate wires made of titanium and aluminum, it is possible to implement the alloy formation of titanium aluminides directly in the weld bead of the welding process. In this study, wall structures were built layer-by-layer with alloy compositions between 10 at% and 55 at% aluminum by changing the feeding rates. During this investigation, the macroscopic characteristics, microstructural formation, and the change of the microhardness values were analyzed. A close examination of the influence of welding speed and post-process heat treatment on the Ti−47Al alloy was performed; this being particularly relevant due to its economically wide spread applications
    corecore