22 research outputs found

    An outlook on protein S-acylation in plants:what are the next steps?

    Get PDF

    S-acylation in plants:an expanding field

    Get PDF

    Assaying protein palmitoylation in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein S-acylation (also known as palmitoylation) is the reversible post-translational addition of acyl lipids to cysteine residues in proteins through a thioester bond. It allows strong association with membranes. Whilst prediction methods for S-acylation exist, prediction is imperfect. Existing protocols for demonstrating the S-acylation of plant proteins are either laborious and time consuming or expensive.</p> <p>Results</p> <p>We describe a biotin switch method for assaying the S-acylation of plant proteins. We demonstrate the technique by showing that the heterotrimeric G protein subunit AGG2 is S-acylated as predicted by mutagenesis experiments. We also show that a proportion of the Arabidopsis alpha-tubulin subunit pool is S-acylated <it>in planta</it>. This may account for the observed membrane association of plant microtubules. As alpha-tubulins are ubiquitously expressed they can potentially be used as a positive control for the S-acylation assay regardless of the cell type under study.</p> <p>Conclusion</p> <p>We provide a robust biotin switch protocol that allows the rapid assay of protein S-acylation state in plants, using standard laboratory techniques and without the need for expensive or specialised equipment. We propose alpha-tubulin as a useful positive control for the protocol.</p

    Maleimide scavenging enhances determination of protein S-palmitoylation state in acyl-exchange methods.

    Get PDF
    S-palmitoylation (S-acylation) is an emerging dynamic post-translational modification of cysteine residues within proteins.Current assays for protein S-palmitoylation involve either in vivo labelling or chemical cleavage of S-palmitoyl groupsto reveal a free cysteine sulfhydryl that can be subsequently labelled with an affinity handle (acyl-exchange). Assays for protein S-palmitoylation using acylexchange chemistry therefore require blocking of non-S-palmitoylated cysteines, typically using Nethylmaleimide, to prevent non-specific detection. This in turn necessitates multiple precipitation based clean-up steps to remove reagents between stages, often leading to variable sample loss, reduced signal or protein aggregation. These combine to reduce the sensitivity, reliability and accuracy of these assays and also requires a substantial amount of time to perform. By substituting these precipitation steps with chemical scavenging of N-ethylmaleimide by 2,3-dimethyl-1,3-butadiene in an aqueous Diels-Alder 4+2 cyclo-addition reaction it is possible to greatly improve sensitivity and accuracy while reducing hands-on and overall time required for assays

    S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    Get PDF
    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment.Biotechnology and Biological Sciences Research Council (Grant IDs: BB/H012923/1, BB/M004031/1, BB/M024911/1); Gatsby Charitable FoundationThis is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/science.aaf400

    S-acylation stabilizes ligand-induced receptor kinase complex formation during plant pattern-triggered immune signalling

    Get PDF
    SummaryPlant receptor kinases are key transducers of extracellular stimuli, such as the presence of beneficial or pathogenic microbes or secreted signalling molecules. Receptor kinases are regulated by numerous post-translational modifications. Here, using the immune receptor kinases FLS2 and EFR, we show that S-acylation at a cysteine conserved in all plant receptor kinases is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine residues within proteins, altering their biophysical properties and behaviour within the membrane environment. We observe S-acylation of FLS2 at C-terminal kinase domain cysteine residues within minutes following perception of its ligand flg22, in a BAK1 co-receptor dependent manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signalling and resistance to bacterial infection. Similarly, mutating the corresponding conserved cysteine residue in EFR supressed elf18 triggered signalling. Analysis of unstimulated and activated FLS2-containing complexes using microscopy, detergents and native membrane DIBMA nanodiscs indicates that S-acylation stabilises and promotes retention of activated receptor kinase complexes at the plasma membrane to increase signalling efficiency

    S-acylation stabilizes ligand-induced receptor kinase complex formation during plant pattern-triggered immune signaling

    Get PDF
    Plant receptor kinases are key transducers of extracellular stimuli, such as the presence of beneficial or pathogenic microbes or secreted signaling molecules. Receptor kinases are regulated by numerous post-translational modifications.1,2,3 Here, using the immune receptor kinases FLS24 and EFR,5 we show that S-acylation at a cysteine conserved in all plant receptor kinases is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine residues within proteins, altering their biochemical properties and behavior within the membrane environment.6 We observe S-acylation of FLS2 at C-terminal kinase domain cysteine residues within minutes following the perception of its ligand, flg22, in a BAK1 co-receptor and PUB12/13 ubiquitin ligase-dependent manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signaling and resistance to bacterial infection. Similarly, mutating the corresponding conserved cysteine residue in EFR suppressed elf18-triggered signaling. Analysis of unstimulated and activated FLS2-containing complexes using microscopy, detergents, and native membrane DIBMA nanodiscs indicates that S-acylation stabilizes, and promotes retention of, activated receptor kinase complexes at the plasma membrane to increase signaling efficiency
    corecore