87 research outputs found

    Stabilization of a compact conformation of monomeric GroEL at low temperature by adenine nucleotides

    Get PDF
    AbstractE. coli GroEL chaperonin monomers, isolated after urea-induced dissociation of GroEL14, undergo cold denaturation below 5Β° C. Above 5Β°C, these monomers undergo MgATP-dependent self-assembly. We have demonstrated a conformational transition at 0Β°C induced by interaction of monomeric GroEL with adenine nucleotides. This conformation has a dramatically decreased Stokes radius and enhanced resistance to trypsin but it is slightly less compact than the conformation of monomers at 23Β°C in the absence of MgATP and it is not capable of spontaneous self-assembly. A second, temperature-dependent conformational change with a transition at about 5Β°C is required for GroEL to undergo oligomerization

    Structure of Cdc4p, a Contractile Ring Protein Essential for Cytokinesis in Schizosaccharomyces pombe

    Get PDF
    The Schizosaccharomyces pombe Cdc4 protein is required for the formation and function of the contractile ring, presumably acting as a myosin light chain. By using NMR spectroscopy, we demonstrate that purified Cdc4p is a monomeric protein with two structurally independent domains, each exhibiting a fold reminiscent of the EF-hand class of calcium-binding proteins. Although Cdc4p has one potentially functional calcium-binding site, it does not bind calcium in vitro. Three variants of Cdc4p containing single point mutations responsible for temperature-sensitive arrest of the cell cycle at cytokinesis (Gly-19 to Glu, Gly-82 to Asp, and Gly-107 to Ser) were also characterized by NMR and circular dichroism spectroscopy. In each case, the amino acid substitution only leads to small perturbations in the conformation of the protein. Furthermore, thermal unfolding studies indicate that, like wild-type Cdc4p, the three mutant forms are all extremely stable, remaining completely folded at temperatures significantly above those causing failure of cytokinesis in intact cells. Therefore, the altered phenotype must arise directly from a disruption of the function of Cdc4p rather than indirectly through a disruption of its overall structure. Several mutant alleles of Cdc4p also show interallelic complementation in diploid cells. This phenomenon can be explained if Cdcp4 has more than one essential function or, alternatively, if two mutant proteins assemble to form a functional complex. Based on the structure of Cdc4p, possible models for interallelic complementation including interactions with partner proteins and the formation of a myosin complex with Cdc4p fulfilling the role of both an essential and regulatory light chain are proposed

    Expression of plant chaperonin-60 genes in Escherichia coli.

    Get PDF
    We have examined the expression in Escherichia coli of genes encoding a plant chloroplast molecular chaperone, chaperonin-60. Purified plant chaperonin-60 is distinct in that it contains two polypeptides, p60cpn-60 alpha and p60cpn-60 beta, which have divergent amino acid sequences (Hemmingsen, S. M., and Ellis, R. J. (1986) Plant Physiol. 80, 269-276; Martel, R., Cloney, L. P., Pelcher, L. E., and Hemmingsen, S. M. (1990) Gene (Amst.) 94, 181-187). The precise polypeptide composition(s) of the active tetradecameric specie(s) (cpn60(14)) has not been determined. Genes encoding the mature forms of the Brassica napus chaperonin polypeptides have been expressed separately and in combination in E. coli to produce three novel strains: alpha, beta, and alpha beta. The plant cpn60 polypeptides accumulated in soluble forms and to similar high levels in each. There was no conclusive evidence that p60cpn-60 alpha assembled into cpn60(14) species in alpha cells. In beta and alpha beta cells, the plant gene products assembled efficiently into cpn60(14) species. Thus, the assembly of p60cpn-60 alpha required the presence of p60cpn-60 beta, whereas the assembly of p60cpn-60 beta could occur in the absence of p60cpn-60 alpha. Significant proportions of the endogenous groEL polypeptides were not assembled into tetradecameric groEL14 in beta and alpha beta cells. Analysis of the tetradecameric species that did form indicated the presence of novel hybrid cpn6014 species that contained both plant and bacterial cpn60 polypeptides

    Assessment of plant chaperonin-60 gene function in Escherichia coli.

    Get PDF
    Brassica napus chaperonin-60 alpha and chaperonin-60 beta genes expressed separately and in combination produce three novel Escherichia coli strains: alpha, beta, and alpha beta. In beta and alpha beta cells, the plant gene products assemble efficiently into tetradecameric cpn60(14) species, including novel hybrids containing both bacterial and plant gene products. The levels of authentic groEL14 are reduced in these cells (Cloney, L. P., Wu, H. B., and Hemmingsen, S. M. (1992) J. Biol. Chem. 267, 23327-23332). The assembly of cyanobacterial ribulose-P2 carboxylase (rubisco) in E. coli requires the activities of the endogenous chaperonin proteins. Furthermore, the extent to which assembly occurs is limited by the normal levels of expression of the groE operon (Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) Nature 337, 44-47). We have now monitored the accumulation of cyanobacterial rubisco in E. coli alpha, beta, and alpha beta cells to assess the activity of the plant cpn60 gene products and effects on endogenous chaperonin functions. Expression of cpn-60 alpha alone did not enhance rubisco assembly, which is consistent with our previous observation that p60cpn-60 alpha required the presence of p60cpn-60 beta for assembly into cpn60(14) species. In contrast, expression of cpn-60 beta alone resulted in markedly enhanced rubisco assembly in cells that accumulated normal levels of both endogenous chaperonin polypeptides (groEL and groES). This demonstrates that assembled p60cpn-60 beta is functional as a chaperonin in E. coli. Co-expression of cpn-60 alpha and cpn-60 beta in cells with normal levels of expression of groES and groEL suppressed rubisco assembly. Increased expression of groES in cells in which cpn-60 alpha and cpn-60 beta were co-expressed relieved this suppression and resulted in enhanced rubisco assembly. Implications with respect to dependence of chloroplast cpn60 function on cpn10 are discussed

    Essential Role for Schizosaccharomyces pombe pik1 in Septation

    Get PDF
    Background: Schizosaccharomyces pombe pik1 encodes a phosphatidylinositol 4-kinase, reported to bind Cdc4, but no

    Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe, interacts with a phosphatidylinositol 4-kinase.

    Get PDF
    The proposed function of Cdc4p, an essential contractile ring protein in Schizosaccharomyces pombe, is that of a myosin essential light chain. However, five conditionally lethal cdc4 alleles exhibit complementation in diploids. Such interallelic complementation is not readily explained if the sole function of Cdc4p is that of a myosin essential light chain. Complementation of cdc4 alleles could occur only if different mutant forms can assemble into an active oligomeric complex or if Cdc4p has more than one essential function. To search for other proteins that may interact with Cdc4p, we performed a two-hybrid screen and identified two such candidates: one similar to Saccharomyces cerevisiae Vps27p and the other a putative phosphatidylinositol (PI) 4-kinase. Binding of Cdc4p to the latter and to myosin heavy chain (Myo2p) was confirmed by immunosorbent assays. Deletion studies demonstrated interaction between the Cdc4p C-terminal domain and the PI 4-kinase C-terminal domain. Furthermore, interaction was abolished by the Cdc4p C-terminal domain point mutation, Gly107 to Ser. This allele also causes failure of cytokinesis. Ectopic expression of the PI 4-kinase C-terminal domain caused cytokinesis defects that were most extreme in cells carrying the G107S allele. We suggest that Cdc4p plays multiple roles in cytokinesis and that interaction with a PI 4-kinase may be important for contractile ring assembly and/or function

    Arabidopsis thaliana type I and II chaperonins

    No full text
    An examination of the Arabidopsis thaliana genome sequence led to the identification of 29 predicted genes with the potential to encode members of the chaperonin family of chaperones (CPN60 and CCT), their associated cochaperonins, and the cytoplasmic chaperonin cofactor prefoldin. These comprise the first complete set of plant chaperonin protein sequences and indicate that the CPN family is more diverse than previously described. In addition to surprising sequence diversity within CPN subclasses, the genomic data also suggest the existence of previously undescribed family members, including a 10-kDa chloroplast cochaperonin. Consideration of the sequence data described in this review prompts questions about the complexities of plant CPN systems and the evolutionary relationships and functions of the component proteins, most of which have not been studied experimentally

    Purification and Properties of Ribulosebisphosphate Carboxylase Large Subunit Binding Protein

    No full text
    • …
    corecore