45 research outputs found

    Polyparameter linear free energy relationship for wood char–water sorption coefficients of organic sorbates

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Environmental Toxicology and Chemistry 34 (2015): 1464-1471, doi:10.1002/etc.2951.Black carbons (BCs), including soots, chars, activated carbons, and engineered nanocarbons, have different surface properties, but we do not know to what extent these affect their sorbent properties. To evaluate this for an environmentally ubiquitous form of BC, biomass char, we probed the surface of a well-studied wood char using 14 sorbates exhibiting diverse functional groups and then fit the data with a polyparameter linear free energy relationship (ppLFER) to assess the importance of the various possible sorbate-char surface interactions. Sorption from water to water-wet char evolved with the sorbate's degree of surface saturation and depended on only a few sorbate parameters: log Kd(L/kg) = [(4.03 ± 0.14) + (-0.15 ± 0.04) log ai)] V + [(-0.28 ± 0.04) log ai)] S + (-5.20 ± 0.21) B where ai is the aqueous saturation of the sorbate i, V is McGowan’s characteristic volume, S reflects polarity, and B represents the electron-donation basicity. As generally observed for activated carbon, the sorbate’s size encouraged sorption from water to the char, while its electron donation/proton acceptance discouraged sorption from water. However, the magnitude and saturation dependence differed significantly from what has been seen for activated carbons, presumably reflecting the unique surface chemistries of these two BC materials and suggesting BC-specific sorption coefficients will yield more accurate assessments of contaminant mobility and bioavailability and evaluation of a site's response to remediation.This material is based upon work supported by the U.S. Army Corps of Engineering, Humphreys Engineer Center Support Activity under Contract No. W912HQ-10-C-0005 awarded as part of the SERDP program.2016-05-1

    Technical note : an inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 14 (2017): 5099-5114, doi:10.5194/bg-14-5099-2017.Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.This research was supported by the NSF Graduate Research Fellowship Program grant no. 2012126152 (Jordon D. Hemingway), NASA Astrobiology grant no. NNA13AA90A and NSF grant no. EAR-1338810 (Daniel H. Rothman), and the WHOI Independent Study Award (Valier V. Galy)

    Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age

    Get PDF
    We present dissolved organic carbon (DOC) concentrations, particulate organic matter (POM) composition (ÎŽ13C, ÎŽ15N, ∆14C, N/C), and particulate glycerol dialkyl glycerol tetraether (GDGT) distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model using ÎŽ13C and N/C indicates that exported POM is consistently dominated by C3 rainforest soil sources, with increasing contribution from C3 vegetation and decreasing contribution from phytoplankton at high discharge. Large C4 inputs are never observed despite covering ≈ 13% of the catchment. Low and variable ∆14C values during 2011 [annual mean = (− 148 ± 82) ‰], when discharge from left-bank tributaries located in the southern hemisphere reached record lows, likely reflect a bias toward pre-aged POM derived from the Cuvette Congolaise swamp forest. In contrast, ∆14C values were stable near − 50‰ between January and June 2013, when left-bank discharge was highest. We suggest that headwater POM is replaced and/or diluted by C3 vegetation and pre-aged soils during transit through the Cuvette Congolaise, whereas left-bank tributaries export significantly less pre-aged material. GDGT distributions provide further evidence for seasonal and inter-annual variability in soil provenance. The cyclization of branched tetraethers and the GDGT-0 to crenarchaeol ratio are positively correlated with discharge (r ≄ 0.70; p-value ≀ 4.3 × 10− 5) due to the incorporation of swamp-forest soils when discharge from right-bank tributaries located in the northern hemisphere is high. Both metrics reach record lows during 2013, supporting our interpretation of increased left-bank contribution at this time. We conclude that hydrologic variability is a major control of POM provenance in the Congo River Basin and that tropical wetlands can be a significant POM source despite their small geographic coverage

    Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 184 (2016): 20-40, doi:10.1016/j.gca.2016.04.003.The concentrations, distributions, and stable carbon isotopes (ÎŽ13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and ÎŽ13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25 – C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7‰ (±1σ standard deviation) spread in ÎŽ13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52 – 0.94). In contrast, plant-dominated n-alcohols (C26 – C36) and n-alkanoic acids (C26 – C36) exhibit stronger positive correlations (r = 0.70 – 0.99) between homologue concentrations and depleted ÎŽ13C values (individual homologues average ≀ -31.3‰ and -30.8‰, respectively), with lower ÎŽ13C variability across chain-lengths (2.6 ± 0.6‰ and 2.0 ± 1.1‰, respectively). All individual plant-wax lipids show little temporal ÎŽ13C variability throughout the time-series (1σ ≀ 0.9‰), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19 – 58% of total plant-wax lipids) and n-alkanoic acids (26 – 76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5 – 16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.J.D.H. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 2012126152. V.V.G. was partly supported by the US National Science Foundation, grants OCE-0851015 and OCE-0928582. Parts of this work were supported by the DFG Research Center/Cluster of Excellence “The Ocean in the Earth System” at MARUM - Center for Marine Environmental Science, University of Bremen.2017-04-0

    Glacier meltwater and monsoon precipitation drive Upper Ganges Basin dissolved organic matter composition

    Get PDF
    Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of Elsevier Ltd. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 244 (2019): 216-228, doi:10.1016/j.gca.2018.10.012.Mountain glaciers store dissolved organic carbon (DOC) that can be exported to river networks and subsequently respired to CO2. Despite this potential importance within the global carbon cycle, the seasonal variability and downstream transport of glacier-derived DOC in mountainous river basins remains largely unknown. To provide novel insight, here we present DOC concentrations and molecular-level dissolved organic matter (DOM) compositions from 22 nested, glaciated catchments (1.4 – 81.8 % glacier cover by area) in the Upper Ganges Basin, Western Himalaya over the course of the Indian summer monsoon (ISM) in 2014. Aliphatic and peptide-like compounds were abundant in glaciated headwaters but were overprinted by soil-derived phenolic, polyphenolic and condensed aromatic material as DOC concentrations increase moving downstream. Across the basin, DOC concentrations and soil-derived compound class contributions decreased sharply from pre- to post-ISM, implying increased relative contribution of glaciated headwater signals as the monsoon progresses. Incubation experiments further revealed a strong compositional control on the fraction of bioavailable DOC (BDOC), with glacier-derived DOC exhibiting the highest bioavailability. We hypothesize that short-term (i.e. in the coming decades) increases in glacier melt flux driven by climate change will further bias exported DOM toward an aliphatic-rich, bioavailable signal, especially during the ISM and post-ISM seasons. In contrast, eventual decreases in glacier melt flux due to mass loss will likely lead to more a soil-like DOM composition and lower bioavailability of exported DOC in the long term.We thank Britta Voss (WHOI) for assisting with sample collection; Travis Drake (FSU), and Ekaterina Bulygina (Woods Hole Research Center) for laboratory assistance; and the NHMFL ICR user program (NSF-DMR-1157490) for aiding in data acquisition and analysis. This study was partly supported by NSF-DEB-1145932 to R.G.M.S. J.D.H. was partially supported by the NSF Graduate Research Fellowship Program under grant number 2012126152, with additional support in the form of travel grants awarded by the MIT Houghten Fund and NHMFL. All data used in this study are available in the Supporting Information Tables S1 and S2

    Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the Ramped Pyrolysis/Oxidation instrument at NOSAMS

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Radiocarbon 59 (2017): 179-193, doi:10.1017/RDC.2017.3.We estimate the blank carbon mass over the course of a typical Ramped PyrOx (RPO) analysis (150 to 1000 °C; 5 °C×min-1) to be (3.7 ± 0.6) ÎŒg C with an Fm value of 0.555 ± 0.042 and a ÎŽ13C value of (-29.0 ± 0.1) ‰ VPDB. Additionally, we provide equations for RPO Fm and ÎŽ13C blank corrections, including associated error propagation. By comparing RPO mass-weighted mean and independently measured bulk ÎŽ13C values for a compilation of environmental samples and standard reference materials (SRMs), we observe a small yet consistent 13C depletion within the RPO instrument (mean – bulk: ÎŒ = -0.8 ‰; ±1σ = 0.9 ‰; n = 66). In contrast, because they are fractionation-corrected by definition, mass-weighted mean Fm values accurately match bulk measurements (mean – bulk: ÎŒ = 0.005; ±1σ = 0.014; n = 36). Lastly, we show there exists no significant intra-sample ÎŽ13C variability across carbonate SRM peaks, indicating minimal mass-dependent kinetic isotope fractionation during RPO analysis. These data are best explained by a difference in activation energy between 13C- and 12C-containing compounds (13–12ΔE) of 0.3 to 1.8 J×mol-1, indicating that blank and mass-balance corrected RPO ÎŽ13C values accurately retain carbon source isotope signals to within 1 to 2‰.J.D.H. was partly supported by the NSF Graduate Research Fellowship Program under grant number 2012126152; V.V.G. was partly supported by the US National Science Foundation (grants OCE- 0851015 and OCE-0928582), the WHOI Coastal Ocean Institute (grant 27040213) and an Independent Study Award (grant 27005306) from WHOI; G.S. and P.K.Z. were supported by the WHOI Postdoctoral Scholar Program with funding provided by NOSAMS (OCE-1239667)

    Triple oxygen isotope insight into terrestrial pyrite oxidation

    Get PDF
    The mass-independent minor oxygen isotope compositions (Δâ€Č17O) of atmospheric O2 and CO2 are primarily regulated by their relative partial pressures, pO2/pCO2. Pyrite oxidation during chemical weathering on land consumes O2 and generates sulfate that is carried to the ocean by rivers. The Δâ€Č17O values of marine sulfate deposits have thus been proposed to quantitatively track ancient atmospheric conditions. This proxy assumes direct O2 incorporation into terrestrial pyrite oxidation-derived sulfate, but a mechanistic understanding of pyrite oxidation—including oxygen sources—in weathering environments remains elusive. To address this issue, we present sulfate source estimates and Δâ€Č17O measurements from modern rivers transecting the Annapurna Himalaya, Nepal. Sulfate in high-elevation headwaters is quantitatively sourced by pyrite oxidation, but resulting Δâ€Č17O values imply no direct tropospheric O2 incorporation. Rather, our results necessitate incorporation of oxygen atoms from alternative, 17O-enriched sources such as reactive oxygen species. Sulfate Δâ€Č17O decreases significantly when moving into warm, low-elevation tributaries draining the same bedrock lithology. We interpret this to reflect overprinting of the pyrite oxidation-derived Δâ€Č17O anomaly by microbial sulfate reduction and reoxidation, consistent with previously described major sulfur and oxygen isotope relationships. The geologic application of sulfate Δâ€Č17O as a proxy for past pO2/pCO2 should consider both 1) alternative oxygen sources during pyrite oxidation and 2) secondary overprinting by microbial recycling

    The pulse of the Amazon: fluxes of dissolved organic carbon, nutrients, and ions from the world's largest river

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(4), (2021): e2020GB006895, https://doi.org/10.1029/2020GB006895.The Amazon River drains a diverse tropical landscape greater than 6 million km2, culminating in the world's largest export of freshwater and dissolved constituents to the ocean. Here, we present dissolved organic carbon (DOC), organic and inorganic nitrogen (DON, DIN), orthophosphate (PO43−), and major and trace ion concentrations and fluxes from the Amazon River using 26 samples collected over three annual hydrographs. Concentrations and fluxes were predominantly controlled by the annual wet season flood pulse. Average DOC, DON, DIN, and PO43− fluxes (±1 s.d.) were 25.5 (±1.0), 1.14 (±0.05), 0.82 (±0.03), and 0.063 (±0.003) Tg yr−1, respectively. Chromophoric dissolved organic matter absorption (at 350 nm) was strongly correlated with DOC concentrations, resulting in a flux of 74.8 × 106 m−2 yr−1. DOC and DON concentrations positively correlated with discharge while nitrate + nitrite concentrations negatively correlated, suggesting mobilization and dilution responses, respectively. Ammonium, PO43−, and silica concentrations displayed chemostatic responses to discharge. Major and trace ion concentrations displayed clockwise hysteresis (except for chloride, sodium, and rubidium) and exhibited either dilution or chemostatic responses. The sources of weathered cations also displayed seasonality, with the highest proportion of carbonate- and silicate-derived cations occurring during peak and baseflow, respectively. Finally, our seasonally resolved weathering model resulted in an average CO2 consumption yield of (3.55 ± 0.11) × 105 mol CO2 km−2 yr−1. These results represent an updated and temporally refined quantification of dissolved fluxes that highlight the strong seasonality of export from the world's largest river and set a robust baseline against which to gauge future change.This work was supported by a grant from the Harbourton Foundation to R. G. M. Spencer and R. M. Holmes. T. W. Drake was supported by ETH Zurich core funding to J. Six. R. G. M. Spencer was additionally supported by NSF OCE-1333157.2021-09-1

    Climate control on terrestrial biospheric carbon turnover

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.)
    corecore