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ABSTRACT 26 

Mountain glaciers store dissolved organic carbon (DOC) that can be exported to river networks 27 

and subsequently respired to CO2. Despite this potential importance within the global carbon cy-28 

cle, the seasonal variability and downstream transport of glacier-derived DOC in mountainous 29 

river basins remains largely unknown. To provide novel insight, here we present DOC concen-30 

trations and molecular-level dissolved organic matter (DOM) compositions from 22 nested, gla-31 

ciated catchments (1.4 – 81.8 % glacier cover by area) in the Upper Ganges Basin, Western 32 

Himalaya over the course of the Indian summer monsoon (ISM) in 2014. Aliphatic and peptide-33 

like compounds were abundant in glaciated headwaters but were overprinted by soil-derived 34 

phenolic, polyphenolic and condensed aromatic material as DOC concentrations increase moving 35 

downstream. Across the basin, DOC concentrations and soil-derived compound class contribu-36 

tions decreased sharply from pre- to post-ISM, implying increased relative contribution of glaci-37 

ated headwater signals as the monsoon progresses. Incubation experiments further revealed a 38 

strong compositional control on the fraction of bioavailable DOC (BDOC), with glacier-derived 39 

DOC exhibiting the highest bioavailability. We hypothesize that short-term (i.e. in the coming 40 

decades) increases in glacier melt flux driven by climate change will further bias exported DOM 41 

toward an aliphatic-rich, bioavailable signal, especially during the ISM and post-ISM seasons. In 42 

contrast, eventual decreases in glacier melt flux due to mass loss will likely lead to more a soil-43 

like DOM composition and lower bioavailability of exported DOC in the long term.  44 
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1. INTRODUCTION 45 

Mountainous river basins experience rapid rates of erosion, rock weathering, and organic carbon 46 

(OC) export, and are thus major drivers of the biogeochemical carbon cycle [Milliman and Syv-47 

itski, 1992; Gaillardet et al., 1999; Galy et al., 2015]. Despite this importance, the source and 48 

fate of dissolved OC (DOC) in mountainous rivers remains poorly constrained. Glaciated catch-49 

ments are of particular interest since glaciers have been shown to provide nutrients and composi-50 

tionally unique, highly bioavailable dissolved organic matter (DOM) to headwater streams 51 

[Hood et al., 2009; Singer et al., 2012; Stubbins et al., 2012; Spencer et al., 2014a; 2014b; Hood 52 

et al., 2015]. It is estimated that mountain glaciers worldwide store approximately 70 Tg of 53 

DOC, with resulting meltwater runoff providing ≈ 0.6 Tg DOC yr-1 to fluvial networks [Hood et 54 

al., 2015]. However, mountain glaciers are subject to major retreat and mass loss, both over gla-55 

cial-interglacial cycles and in the coming centuries in response to climate change [Bolch et al., 56 

2012; Bliss et al., 2014; Lutz et al., 2014], with unknown consequences for DOC cycling in 57 

mountainous rivers. 58 

This inability to predict carbon-cycle responses to changing glacier conditions is, at least 59 

in part, due to our limited understanding of the climatic and geomorphic controls on mountain-60 

ous river DOC cycling. For example, seasonal precipitation trends are likely important drivers of 61 

DOC dynamics, but these controls have not yet been fully assessed. Additionally, downstream 62 

changes in catchment erosion rate, soil thickness, and soil pore-water residence time could influ-63 

ence the degree to which headwater DOC signals are overprinted by downstream soil inputs. 64 

However, riverine DOC signals are rarely interpreted within this geomorphic context, hindering 65 

our ability to isolate the role of glacier meltwater on carbon-cycle dynamics. 66 

To provide novel insight, here we examined the spatial and seasonal evolution of DOC 67 

concentration, bioavailability, and DOM molecular composition in the Upper Ganges Basin. Lo-68 

cated on the southern flank of the Western Himalaya, the Upper Ganges Basin is comprised of 69 

the Alaknanda and Bhagirathi Rivers, which combine to form the Ganges River (Fig. 1a). Both 70 

rivers are sourced from the Gangotri glacier group, one of the largest and best-monitored (in 71 

terms of area loss rate) glacier groups in the Himalayan range [Bolch et al., 2012]. Additionally, 72 

the Upper Ganges Basin is strongly influenced by the Indian summer monsoon (ISM), which 73 

peaks in July and August and results in a roughly 5-fold increase in river discharge at this time 74 

[Chakrapani and Saini, 2009]. Both modeling and observational studies indicate that glacier 75 
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meltwater contributes 10 to 30 % of total annual discharge in this system at the base of the Hima-76 

laya, while the remainder is derived primarily from ISM precipitation with supplemental snow-77 

melt contribution during early summer months [Bookhagen and Burbank, 2010; Maurya et al., 78 

2010; Immerzeel et al., 2013]. 79 

 Extensive glacier coverage (Fig. 1b), combined with seasonal ISM influence (Fig. 1c), 80 

makes the Upper Ganges Basin an ideal location to assess the relative importance of precipitation 81 

and glacier melt as drivers of DOC concentration and DOM composition in mountainous rivers. 82 

To do so, here we report concentration and compositional results for samples collected from 22 83 

main-stem and tributary locations spanning a  4 km elevation gradient starting at the Gangotri 84 

glacier terminus and ending in the Ganges River downstream of the Bhagirathi-Alaknanda con-85 

fluence (Fig. 1a). Because main-stem geomorphic parameters such as catchment slope and soil 86 

thickness inherently co-vary with glacier coverage moving downstream, we interpret DOC re-87 

sults within a geomorphic context. By including a set of tributaries spanning a range of catch-88 

ment areas, elevations, slopes, and glacial extents, our nested catchment approach aims to isolate 89 

the influence of glaciers on riverine DOC dynamics. In addition to evaluating spatial patterns, we 90 

investigated seasonal DOC and DOM variability by collecting samples across three seasons in 91 

2014: pre-monsoon (April – May), ISM (June – September), and post-monsoon (October – De-92 

cember). 93 

 94 

2. MATERIALS AND METHODS 95 

2.1. Sample collection 96 

Water was collected ≈ 5 m from the bank of each river and was immediately filtered through a 97 

pre-combusted (450 ºC, 4 hours) 0.45 m glass fiber filter using an acid pre-leached (1.2 mol L-1 98 

HCl, one week) NalgeneTM filtration tower. Filtered water was transferred into either 60 mL pol-99 

ycarbonate (PC), 250 mL high density polyethylene (HDPE), or 1 L HDPE bottles (all acid pre-100 

leached, 1.2 mol L-1 HCl, one week). The entire setup was rinsed (3) with filtered river water 101 

before bottles were filled for sample collection. To constrain end-member DOC concentrations 102 

and DOM compositions, snowpack and glacier ice was additionally collected. During the pre-103 

monsoon season, snowpack (2 locations) and glacier ice (1 location) samples were collected into 104 

10 L bags using a pre-rinsed field hammer and immediately allowed to melt before being filtered 105 

as described above. At each snow/ice location, 4-5 aliquots were taken within a  1-2 m radius to 106 
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provide a representative sample. All DOC samples were stored unacidified and were frozen with-107 

in 48 h (typically < 24 h) and kept at -20 ºC until analysis. Because it is possible that small 108 

amounts of DOC were respired prior to sample freezing, concentrations reported here should be 109 

taken as conservative values. 110 

 111 

2.2. DOC incubations  112 

Seven pre-monsoon samples (1 glacier ice, 2 snowpack, 4 river water; Table S1) were sub-113 

ject to triplicate 28-day incubations as described previously [Spencer et al., 2014b]. During sam-114 

pling at each of these locations, filtered water (0.45 m) was immediately transferred into 15 20 115 

mL pre-combusted (450 ºC, 4 hours) glass scintillation vials and allowed to incubate in the dark 116 

at room temperature ( 20 ºC). Because in situ temperatures varied significantly, incubating all 117 

samples at  20 ºC allows for more accurate comparisons of bioavailability between samples. 118 

Incubations were performed in the dark in order to inhibit growth of photoautotrophs, which 119 

would act to increase DOC concentrations and mask DOC losses due to heterotrophic respira-120 

tion. At each time point (t = 0, 2, 7, 14, and 28 d), three vials were acidified dropwise using 12 121 

mol L-1 HPLC-grade HCl until pH 2 was reached and were subsequently stored at room tempera-122 

ture until analysis. The initial time point (t = 0 d) for all samples was immediately acidified in 123 

the field. All waters were aerobic at the time of sampling and were unlikely to have become an-124 

aerobic during incubations. No biofilm formation or DOC flocculation was observed during in-125 

cubations. 126 

 127 

2.3. DOC quantification and extraction  128 

All samples were measured for DOC concentrations (written [DOC]) via high-temperature com-129 

bustion using a Shimadzu TOC-V organic carbon analyzer [Mann et al., 2012]. After thawing at 130 

4 ºC, water samples were acidified to pH 2 by adding 0.1% (v/v) concentrated HPLC-grade HCl 131 

to allow for removal of inorganic carbon (not necessary for incubation samples as they were pre-132 

viously acidified to pH 2) and were injected until the peak area coefficient of variance for three 133 

injections was < 2% (typically 3 – 5 injections). Areas were blank corrected using 18.2 M Mil-134 

li-Q water and were converted to [DOC] using a six-point standard calibration curve ranging 135 

from 0.10 – 10.00 mg L-1. Both blanks and calibration standards were analyzed between every 10 136 

samples. Long-term standard reproducibility indicates that results are precise to within  0.05 mg 137 
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L-1 ( 1) and that the detection limit for reliable quantification using this method is  0.10 mg 138 

L-1. All results were thus rounded to the nearest increment of 0.05 mg L-1 and analytical uncer-139 

tainty is assumed to be  0.05 mg L-1 throughout this study.  140 

 After quantification, all samples (n = 58; excluding incubations) were prepared for FT-141 

ICR-MS analysis via solid-phase extraction (SPE) using 50 mg Bond Elut (Agilent Technolo-142 

gies) styrene-divinylbenzene copolymer (PPL) columns [Dittmar et al., 2008]. Columns were 143 

cleaned and primed by soaking in HPLC-grade methanol overnight, rinsing with 2 cartridge 144 

volumes of 18.2 M MilliQ water, 1 cartridge volume of methanol, and finally 2 cartridge 145 

volumes of acidified (pH 2) MilliQ water. Acidified samples (pH 2) were then eluted, and sam-146 

ple volumes were adjusted such that 10 g of extractable carbon was loaded onto each column 147 

(assuming an average 50 % extraction efficiency). Lastly, columns were rinsed with 2 cartridge 148 

volumes of acidified MilliQ water, dried under a stream of ultra-high purity N2 gas, and eluted 149 

with 250 L HPLC-grade methanol into pre-combusted (450 ºC, 4 hours) vials. Similar to previ-150 

ous studies focusing on DOC-poor, glacier streams [Spencer et al., 2014b], PPL extraction effi-151 

ciencies could not be calculated due to limited sample volumes. However, extraction efficiencies 152 

are generally between 40 and 60 %, depending on sample source [Dittmar et al., 2008]. We 153 

therefore assume that all samples analyzed here exhibited extraction efficiencies between 40 and 154 

60 % despite compositional differences. Some samples did not contain sufficient volume to reach 155 

the 10 g target due to low [DOC] (minimum of 25 % target mass; Table S1). To test if this 156 

range of PPL-extracted DOC mass affects FT-ICR-MS results, we additionally extracted one 157 

sample for which there existed sufficient material (glacier ice; Table S1) at 4 target volume, as 158 

discussed in Section 3.3, below. 159 

 160 

2.4. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 161 

The molecular-level composition of PPL-extracted DOM was determined using a custom-built 162 

9.4 T FT-ICR MS equipped with a 22 cm horizontal bore ICR cell located at the National High 163 

Magnetic Field Laboratory (NHMFL, Florida State University, Tallahassee, FL) [Kaiser et al., 164 

2011a; 2011b; 2013]. Samples were directly infused to the mass spectrometer via an electrospray 165 

ionization (ESI) source at a flow rate of 0.5 L min-1 to generate negatively-charged molecular 166 

ions. Negative ion mode results in deprotonation of acidic functional groups that are abundant in 167 
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natural samples and is therefore best suited for untargeted DOM analysis. We note that biases 168 

against highly hydrophilic material during PPL extraction, combined with the poor ionization 169 

efficiency of these compounds, potentially biases resulting mass spectra. However, these effects 170 

have been shown to be minor in natural freshwater DOM samples [Raeke et al., 2016]. Experi-171 

mental parameters were optimized for DOM analysis (-2.5 kV needle voltage,  -300 V tube lens, 172 

8 W heated metal capillary) [Stenson et al., 2003]. Ion accumulation time per scan was adjusted 173 

following O'Donnell et al. (2016) to account for differences in PPL-extracted [DOC] due to 174 

sample limitation and variable extraction efficiency, with longer integration times for dilute 175 

samples leading to approximately constant total ion current across all samples. Each mass spec-176 

trum was the sum of 100 individual co-added spectra. Samples were measured in a random or-177 

der, and reproducibility was estimated by analyzing an arbitrarily chosen subset (n = 5) of sam-178 

ples in triplicate.  179 

Molecular formulae were assigned to signals > 6 root mean square baseline noise and 180 

with mass errors below 500 ppb [O'Donnell et al., 2016]. Formulae were determined using the 181 

EnviroOrg© TM (Corilo, 2015) following published rules [Koch et al., 2007], and all elemental 182 

combinations within C1-45H1-92N0-4O1-25S0-2 were considered for assignment. To classify formulae 183 

within compound classes, a modified version of the aromaticity index (AImod) first presented by 184 

Koch and Dittmar [2006] was calculated for each formula as 185 

 186 

AImod= 
1+C–S–0.5(O+H+N)

C–0.5O–N–S
. (Eq. 1) 187 

 188 

Formulae were then classified based on elemental stoichiometries and AImod values as follows: 189 

condensed aromatic, AImod > 0.67; polyphenolic, 0.67  AImod > 0.5; unsaturated phenolic high 190 

oxygen content, H/C < 1.5, O/C  0.5; unsaturated phenolic low oxygen content, H/C < 1.5, O/C 191 

< 0.5; peptide-like, H/C  1.5, N  1; aliphatic, H/C  1.5, N = 0 [Santl-Temkiv et al., 2013; 192 

Spencer et al., 2014b]. We note that peptide assignments can be ambiguous since N-containing 193 

compounds are additionally present in alternative isomeric arrangements. Additional classifica-194 

tion constraints specifically incorporating phosphorus content have recently been calibrated us-195 

ing biomass extract and have been shown to increase classification accuracy [Rivas-Ubach et al., 196 

2018]. However, because phosphorus-containing compounds are typically low in abundance and 197 
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not easily resolved within mountainous headwater DOM samples [Spencer et al., 2014b], here 198 

we retain the classification scheme of Santl-Temkiv et al. (2013). Finally, the relative abundance 199 

of each compound class was determined by rescaling peak intensities such that the total ion 200 

count for the entire mass spectrum is equal to unity and calculating the intensity-weighted sum of 201 

all peaks within a given compound class.  202 

 203 

2.5. Geospatial and statistical analysis 204 

Geospatial data for all sites were analyzed using the Geographic Resources Analysis Support 205 

System software (GRASS v7.2). Catchment areas and geomorphic parameters upstream of each 206 

sampling location were calculated using the Advanced Spaceborne Thermal Emission and Re-207 

flection Radiometer (ASTER) global digital elevation model with 90 m spatial resolution (Fig. 208 

1a) [Jarvis et al., 2008]. Average catchment slope was calculated as the mean value of the slope 209 

for all pixels within a given catchment area. Catchment relief ratio at each sampling location was 210 

determined as the maximum elevation difference divided by the upstream main-stem distance. 211 

Glacial extent within each catchment was estimated using the Randolph Glacier Inventory (RGI) 212 

v5.0 database [RGI Consortium, 2015] and converted to percent areal coverage (Fig. 1b). Precip-213 

itation estimates were generated using re-analyzed tropical rainfall monitoring mission (TRMM) 214 

data following Bookhagen and Burbank (2010) (Fig. 1c). 215 

Samples were divided into seasonal groups and temporal variability in DOC concentra-216 

tion/composition was assessed using one-way analysis of variance (ANOVA). Reported p-values 217 

for temporal trends represent the probability of falsely rejecting the null hypothesis that there ex-218 

ists no seasonal variability. Because we do not expect DOC concentration/composition to be a 219 

linear function of catchment properties a priori, and because FT-ICR MS compositional results 220 

are only semi-quantitative, all spatial trends were assessed using non-parametric rank correlation 221 

unless otherwise stated. Resulting Spearman correlation coefficients (s) denote the strength of 222 

any monotonically increasing/decreasing relationship, and corresponding p-values represent the 223 

probability that no relationship exists. 224 

 225 

3. RESULTS 226 

3.1. Geomorphic parameters 227 
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All geomorphic parameters are reported in Table S1. Sample sites represent a  4 km elevation 228 

transect, ranging from a minimum of 338 meters above sea level (masl) to a maximum of 3961 229 

masl. Mean catchment elevation upstream of each sample site correspondingly ranged from 2900 230 

masl to 5400 masl, while catchment area varied by roughly two orders of magnitude from 172 231 

km2 to 21,789 km2. Tributary sampling locations (n = 7 sites) spanned  70 % of the main-stem 232 

sample elevation range (653 masl to 3175 masl; n = 15 sites), although tributary catchment areas 233 

only reached a maximum of 3026 km2 (i.e. 14 % of the most down-stream main-stem sampling 234 

location).  235 

Tributary and main-stem catchment relief ratio exhibited similar variability, ranging from 236 

45 m km-1 to 119 m km-1 (average = 90 ± 30 m km-1) and 21 m km-1 to 94 m km-1 (average = 49 237 

± 22 m km-1), respectively. However, because all sites are contained within the Himalayan range, 238 

catchments were consistently steep and resulting average slope exhibited only modest variability, 239 

ranging from 24.2º to 31.9º (average = 28.1 ± 1.5 º). Catchment slope was thus uncorrelated with 240 

catchment area, sampling elevation, and relief ratio, but did exhibit a slight negative correlation 241 

with mean catchment elevation (s = -0.53; p = 9.710-3) and with glacier coverage (s = -0.55; p 242 

= 6.010-3). This negative correlation results from the fact that high-elevation, highly glaciated 243 

sites contained significant areas of low-slope glacial valleys, thus lowering the mean catchment 244 

slope. 245 

 Main-stem sites spanned a wide range in glacial coverage, from 10.3 to 81.8 % (average 246 

= 25.8 ± 18.8 %), while tributaries ranged from 1.4 to 44.8 % (average = 13.0 ± 15.3 %; Fig. 1b). 247 

Because main-stem glacial coverage inherently decreases as sample sites move downstream, 248 

there exists significant non-linear covariance with geomorphic parameters such as catchment ar-249 

ea (s = -0.99; p = 2.110-33), mean elevation (s = 0.99; p = 8.210-36), and relief ratio (s = 250 

0.94; p = 6.310-18). However, by including tributary streams in addition to main-stem samples, 251 

our nested catchment approach allows for separation of glacier coverage and geomorphic param-252 

eters. Tributary glacial coverage exhibited no significant correlation with catchment area or relief 253 

ratio, and considerably weaker correlation with mean catchment elevation (s = 0.58; p = 6.610-254 

3). Thus, when considering the entire sample set (i.e. both tributaries and main-stem sites), glaci-255 

er coverage was uncorrelated with both relief ratio and catchment area, allowing us to inde-256 

pendently assess the influence of these controls on resulting DOM signals. 257 

 258 
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3.2. DOC concentration 259 

For the entire dataset, [DOC] ranged from a minimum of 0.10 mg L-1 to a maximum of 0.70 mg 260 

L-1 with a mean value of 0.29 ± 0.16 mg L-1 (n = 55;  ± 1 uncertainty; Table S1). [DOC] dis-261 

played no statistically significant difference between main-stem and tributary sites (t-test for 262 

equal means: p > 0.05, T = 0.51, degrees of freedom = 35), with main-stem samples averaging 263 

0.29 ± 0.17 mg L-1 (n = 38) and tributary samples averaging 0.31 ± 0.15 mg L-1 (n = 17). For all 264 

catchments, [DOC] decreased sharply from the pre-monsoon to the post-monsoon seasons. Mean 265 

values dropped from 0.39 ± 0.16 mg L-1 (n = 19) during the pre-monsoon to 0.18 ± 0.08 mg L-1 266 

(n = 17) during the post-monsoon (p = 2.810-4; Fig. 2a), although we note that we were not able 267 

to sample all sites in all seasons. Still, the temporal [DOC] decrease remains statistically signifi-268 

cant when only sites that were sampled in all seasons are considered (n = 14 sites; p = 2.210-4), 269 

indicating that this observed trend was not the result of sampling biases. Furthermore, the lack of 270 

statistically significant difference between main-stem and tributary [DOC] holds when data are 271 

separated by season (t-test for equal means: p > 0.05 in all cases), indicating that this result was 272 

not biased by the inclusion of data collected across multiple seasons.  273 

 274 

3.3. DOM composition 275 

FT-ICR MS resulted in the detection of 28,629 unique molecular formulae across our 276 

sample set, with individual samples containing between 7,392 and 15,198 formulae (average = 277 

11,544 ± 1,917; n = 58;  ± 1 uncertainty; Table S2). Triplicate measurements resulted in < 7.4 278 

% variability (1–3 % for most samples) in the number of total detected formulae as well as the 279 

number of formulae assigned to each compound class, indicating minimal analytical uncertainty. 280 

Additionally, results from glacier ice analyzed at 1 and 4 concentration were identical within 281 

uncertainty (Table S1), indicating that the range of concentrations for samples presented in this 282 

study had no effect on peak detection and calculated compound class abundances. 283 

For all riverine samples, DOM molecular diversity, as measured by formula number, de-284 

creased from pre- to post-monsoon (p = 7.610-8; Fig. 3a) and was positively correlated with 285 

[DOC] (s = 0.76; p = 1.410-11; Fig. 3b). The majority of DOM in all riverine samples was clas-286 

sified as unsaturated phenolic compounds with high oxygen content (average = 41.1 ± 7.9 %; n = 287 

55;  ± 1 uncertainty; Table S1) or unsaturated phenolic compounds with low oxygen content 288 

(average = 44.0 ± 8.5 %). Although lower in abundance than unsaturated phenolic compounds, 289 
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aliphatic and polyphenolic material contributed up to 15.1 % (average = 4.9 ± 2.8 %) and 11.5 % 290 

(average = 7.4 ± 2.6 %) of fluvial DOM, respectively. Both condensed aromatic and peptide 291 

compound classes were significantly less abundant, contributing only 1.7 ± 0.8 % and 1.0 ± 1.0 292 

%, respectively. 293 

In contrast to fluvial samples, snowpack and glacier melt samples contained significantly 294 

lower contributions by high- and low-oxygen unsaturated phenolic compound classes at 18.4 ± 295 

3.1 % and 32.5 ± 5.6 %, respectively (n = 3; Table S1). Rather, these samples were described by 296 

high relative contributions of aliphatic (average = 23.9 ± 5.8 %) and peptide-like material (aver-297 

age = 20.4 ± 3.0 %) and significantly lower contributions of condensed aromatic (average = 0.8 298 

± 0.1 %) and polyphenolic (average = 3.5 ± 0.6 %) compound classes. 299 

 300 

4. DISCUSSION 301 

4.1. Controls on Concentration  302 

Our dataset reveals that Upper Ganges Basin [DOC] varied significantly as a function of season 303 

and glacier coverage (Fig. 2). Large seasonal hydrologic variability in this region likely exhibits 304 

a strong control on the relative contributions of glacier-, snow-, and soil-derived DOC to export-305 

ed riverine signals. For example, warming air temperatures during early summer months, com-306 

bined with expansive snow cover from late monsoon and winter precipitation, should lead to in-307 

creased snowmelt-derived discharge at this time. Both observations [Maurya et al., 2010; An-308 

dermann et al., 2012] and modeling results [Lutz et al., 2014] from this region indicate that up to 309 

≈ 75 % of discharge during Apr-May-Jun is derived from surface runoff due to snowmelt. In 310 

contrast, ISM rainfall and glacier meltwater are expected to dominate monsoon-season dis-311 

charge, when both temperature and precipitation reach annual maxima [Andermann et al., 2012] 312 

(Fig. 1c). Observed seasonal [DOC] trends (Fig. 2a) are thus consistent with hydrologic variabil-313 

ity. Elevated concentrations during the pre-monsoon season were likely a result of increased sur-314 

face soil pore water residence time, as snowmelt is expected to slowly percolate through DOM-315 

rich soil pore-waters and surface litter layers that have received organic matter inputs but have 316 

not yet been extensively flushed [McGlynn and McDonnell, 2003; Inamdar et al., 2006; Spencer 317 

et al., 2010]. Conversely, during the ISM, higher discharge and short hydraulic retention times 318 

on the landscape would result in a bias toward DOM-poor rainwater and glacier meltwater, thus 319 

diluting soil-derived inputs. 320 
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Post-monsoon samples exhibited the lowest [DOC] for all but one sampling location (Ta-321 

ble S1). This result is unlikely to be caused by a simple dilution effect since pre- and post-322 

monsoon seasons are described by nearly identical discharge regimes [Chakrapani and Saini, 323 

2009]. Rather, it has been shown in nearby catchments that post-monsoon discharge is dominat-324 

ed by the flushing of transient fractured basement groundwater aquifers that have accumulated 325 

during the ISM [residence time ≈ 45 d; Andermann et al., 2012]. Low [DOC] at this time implies 326 

either that aquifer recharge was derived from DOC-poor sources such as rainwater and glacier 327 

meltwater [Hood et al. 2015], that groundwater has lost DOC during its ≈ 45 d transit through 328 

the bedrock (e.g. due to respiration), or a combination of both. 329 

In addition to temporal variability, [DOC] exhibited a significant negative relationship 330 

with glacial coverage for all samples across all seasons (s = -0.57; p = 5.510-6; Fig. 2b). Pro-331 

glacial streams and highly glaciated catchments exhibited the lowest [DOC] (0.10 mg L-1), while 332 

modestly glaciated tributaries and downstream main-stem samples reached 0.60 mg L-1 and 0.70 333 

mg L-1, respectively. This relationship is non-linear, with [DOC] typically remaining below ≈ 334 

0.30 mg L-1 until glacial coverage has dropped below ≈ 20 %. Because main-stem glacial cover-335 

age inherently decreases moving downstream (Fig. 1b), it remains possible that this correlation 336 

reflects a shift in soil inputs due to changing geomorphic parameters rather than glacier extent 337 

per se.  338 

Because our nested sample approach includes samples from tributary sites whose geo-339 

morphic parameters are uncorrelated with glacier extent, we were able to independently assess 340 

the geomorphic and glacial controls on [DOC]. Following Moore et al. [1993], we chose catch-341 

ment slope as a proxy for soil thickness and hydrologic retention time on the landscape. Catch-342 

ment slope was uncorrelated with [DOC] across our dataset (p > 0.05), including both main-stem 343 

and tributary sites, suggesting that soil thickness alone cannot explain observed concentration 344 

trends. We further tested the effect of in situ processing during stream transit by treating relief 345 

ratio, defined as the change in elevation per unit of stream length, as a proxy for in-stream resi-346 

dence time. Catchment relief ratio was uncorrelated with glacier coverage (p > 0.05), making it 347 

an ideal independent geomorphic metric. While [DOC] did decrease with increasing relief ratio 348 

across the entire sample set (s = -0.41; p = 2.210-3; Fig. S1), this relationship was weaker than 349 

that with glacial coverage (Fig. 2b). Furthermore, unlike glacier extent, relief ratio was uncorre-350 

lated with [DOC] in tributary samples (p > 0.05). It is therefore unlikely that observed spatial 351 
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[DOC] trends simply reflect shifting geomorphic parameters. Rather, we conclude that DOC-352 

poor glacier meltwater is an important driver of downstream DOC concentrations in the Upper 353 

Ganges Basin. 354 

 355 

4.2. Compositional Trends 356 

In addition to DOC concentration trends, we observed large spatiotemporal variability in DOM 357 

molecular composition within the Upper Ganges Basin (Figs. 3-5). Higher DOM molecular di-358 

versity with increasing [DOC] indicates the addition of a chemically unique downstream source, 359 

especially during the pre-monsoon season, while low post-monsoon diversity suggests increased 360 

relative contribution of headwater signals. Diversity trends are unlikely to be driven by photo-361 

degradation since glacier-fed headwater DOM is described by low UV-visible absorbance [Stub-362 

bins et al., 2012], while high turbidity [Chakrapani and Saini, 2009] and short travel distances ( 363 

206 km; Table S1) in these rivers further inhibit interaction with light. 364 

To characterize DOM compositional trends, we examined changes in the relative abun-365 

dances of formulae that were detected by FT-ICR MS in all river samples (n = 4,990, or 17 % of 366 

total formulae) when correlated with [DOC], glacier coverage, season, and relief ratio. Of these 367 

4,990 formulae, 84 % were significantly correlated with [DOC] (p < 0.05), with an average abso-368 

lute-value Spearman correlation coefficient (written as |s|) of 0.66 ± 0.17 ( ± 1; Fig. 4a). Both 369 

the percentage of significantly correlated formulae and the average correlation strength de-370 

creased slightly when correlated with glacial coverage (76 %; |s| = 0.55 ± 0.15; Fig. 4b) and 371 

season (72 %; |s| = 0.49 ± 0.13; Fig. 4c) but decreased sharply when correlated with relief ratio 372 

(47 %; |s| = 0.33 ± 0.04; Fig. S2). Any relationships between relative abundance and relief ratio 373 

do not simply reflect auto-correlation with glacial coverage, as our nested catchment approach 374 

ensured that there was no correlation between relief ratio and glacial coverage (Section 3.1.). 375 

Thus, the observation that relief ratio explains less variability than does glacial coverage, both in 376 

terms of formula number and correlation strength, indicates that compositional trends do not 377 

simply reflect downstream changes in catchment geomorphology. Rather, DOM molecular com-378 

position is a strong function glacier coverage due to the contribution of compositionally unique, 379 

low [DOC] glacier meltwater. 380 

For all environmental parameters, formulae exhibiting similar s values were tightly clus-381 

tered in van Krevelen space. Formulae with high H/C and low O/C were positively correlated 382 
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with glacial coverage, season, and catchment relief ratio and were negatively correlated with 383 

[DOC], whereas low H/C and high O/C formulae displayed the opposite trend (Fig. 4, S2). This 384 

nearly identical compositional response to glacial coverage and season (Fig. 4b-c) strongly sug-385 

gests that exported DOM becomes biased toward a glaciated, headwater signal during the ISM 386 

and, especially, post-monsoon seasons. This observed bias toward glaciated signals is consistent 387 

with previous studies that have related DOM composition to 14C content and bioavailability in 388 

glacier-fed streams and have concluded that glacier-derived DOM is rich in highly bioavailable, 389 

aliphatic compounds (i.e. high H/C, low O/C) [Hood et al., 2009; Singer et al., 2012; Spencer et 390 

al., 2014a; 2014b]. In contrast, the observed decreasing relative abundance of these compounds 391 

with increasing [DOC] (Fig. 4a) provides further evidence for downstream admixture of relative-392 

ly unsaturated, aromatic DOM from surface litter and organic rich soil layers [McGlynn and 393 

McDonnell, 2003; Inamdar et al., 2006; Spencer et al., 2010]. 394 

To quantify spatiotemporal trends, we categorized each detected formula as aliphatic, 395 

peptide-like, unsaturated phenolic (both high- and low-oxygen content), condensed aromatic, or 396 

polyphenolic based on published classification schemes (see Section 2.4, above) [Santl-Temkiv et 397 

al., 2013; Spencer et al., 2014b]. Although the majority of compounds detected in stream sam-398 

ples (≥ 74 %, Table S1) were classified as unsaturated phenolic, here we focus on aliphatics, 399 

condensed aromatics, and polyphenolics since glacier and soil sources contain characteristic pro-400 

portional contributions of these compound classes [Singer et al., 2012; Stubbins et al., 2012; 401 

Spencer et al., 2014b]. For example, microbially derived DOM that is characteristic of glacier-402 

sourced material is expected to be rich in aliphatics relative to soil-derived inputs [Singer et al., 403 

2012; Stubbins et al., 2012; Spencer et al., 2014b]. In contrast, DOM derived from the leaching 404 

of higher plant material in organic-rich soil horizons has been shown to exhibit higher propor-405 

tions of phenolic and polyphenolic material [O’Donnell et al., 2016; Rivas-Ubach et al., 2018; 406 

Stubbins et al., 2012]. 407 

Both polyphenolic and condensed aromatic relative abundances declined significantly as 408 

the ISM progressed (p = 2.510-5 and 3.410-6, respectively; Fig. 5a-b). Additionally, these 409 

compound classes increased in relative abundance with increasing [DOC] (s = 0.87 and 0.83; p 410 

= 5.110-18 and 3.010-18, respectively; Fig. 5d-e), decreased with increasing glacial coverage (s 411 

= -0.62 and -0.59; p = 3.910-7 and 2.110-6; Fig. 5g-h), and displayed no correlation with 412 

catchment relief ratio (p > 0.05; Fig. S3a-b). 413 
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 For highly glaciated catchments, both polyphenolic and condensed aromatic relative 414 

abundances approached their glacier/snowpack end-member values (0.8 ± 0.1 % condensed aro-415 

matic; 3.5 ± 0.6 % polyphenolic; n = 3; Fig. 5; Table S1), confirming that meltwater was the pre-416 

dominant headwater DOM source. In contrast, soil organic matter has been shown to contain 417 

high relative abundances of condensed aromatic (e.g. combustion products, black carbon) [Jaffe 418 

et al., 2013] and polyphenolic (e.g. vascular-plant lignin) [Stubbins et al., 2012; O'Donnell et al., 419 

2016] compounds. Strong enrichment in both classes with increasing [DOC] and decreasing 420 

glacier coverage further indicated downstream incorporation of soil-derived DOM and/or de-421 

composition of glacier-derived DOM. In agreement with concentration (Fig. 2a) and chemical 422 

diversity (Fig. 3a) trends, temporal decreases in the relative abundance of these classes require 423 

that soil inputs become less important during the ISM and post-monsoon seasons. We therefore 424 

hypothesize that elevated precipitation during the ISM (Fig. 1c) increases surface flow rates and 425 

thus decreases hydraulic residence time in soil pore-waters, leading to less overprinting of head-426 

water signals. Additionally, it has been shown that groundwater aquifers in this region are re-427 

charged during the ISM and exhibit a ≈ 45-day residence time [Andermann et al., 2012]. Thus, 428 

while precipitation rates are low during the post-ISM season (Fig. 1c), large groundwater inputs 429 

could explain the continued decrease in soil-like DOM signatures at this time. This interpretation 430 

is consistent with seasonal [DOC] trends, which also reach minimum values during the post-ISM 431 

seasons (Section 4.1). 432 

The relative contribution of aliphatic material increased with glacier cover (s = 0.71; p = 433 

1.110-9) and decreased sharply with [DOC] (s = -0.74; p = 9.810-11; Fig. 5f, 5i). This trend 434 

agrees with previous studies showing that these compounds are abundant in depositional DOM 435 

sources and are produced in high quantities by active supraglacial, subglacial and proglacial mi-436 

crobial communities [Sharp et al., 1999; Bhatia et al., 2006; Singer et al., 2012; Stubbins et al., 437 

2012; Spencer et al., 2014b]. However, heavily glaciated catchments never reached the measured 438 

glacier/snowpack end-member value (23.9 ± 5.8 %; Fig. 5; Table S1), likely due to the high bio-439 

availability of this material [Hood et al., 2009; Singer et al., 2012; Spencer et al., 2014b] and 440 

large heterogeneity within glacier ecosystems (Fig. 5i) [Bhatia et al., 2006; Wilhelm et al., 2013]. 441 

Aliphatic compounds have also been shown to degrade rapidly in both glacier-derived [Singer et 442 

al., 2012] and permafrost-derived DOM [Spencer et al., 2015]. This is consistent with our obser-443 
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vations and likely explains the lack of temporal trend in aliphatic abundance (Fig. 5c), in contrast 444 

to all other observed signals. 445 

 446 

4.3. Bioavailability trends  447 

Upper Ganges Basin DOC bioavailability additionally exhibited large variability. To compare 448 

with literature results [Hood et al., 2009; Singer et al., 2012; Spencer et al., 2014b], here we cal-449 

culated bioavailable DOC (% BDOC) as the average relative decrease in [DOC] between t = 0 d 450 

and t = 28 d for triplicate samples. Intermediate time points were used to verify that DOC decay 451 

was first-order with respect to carbon concentration (i.e. exponential decay), as is expected for 452 

first-order decay processes such as biological utilization (Fig. 6). Consistent with other studies, 453 

incubations were terminated at t = 28 d in order to capture the entire decay profile. That is, the 454 

concentration of DOC remaining at t = 28 d approached an asymptotic value, as shown in Fig. 6. 455 

BDOC ranged from 32.8 % (Ganges at Rhishikesh, corresponding to 0.23 mg C L-1) to 456 

59.7 % (Gangotri Glacier at Gomukh, corresponding to 0.06 mg C L-1) for river samples and av-457 

eraged 60.5 ± 6.1 % for glacier ice and snowpack samples (corresponding to 0.83 ± 0.32 mg C L-458 

1; n = 3; Table S1). Although photochemical processes could increase BDOC relative to light-459 

free incubation results reported here, interaction with light is likely minimal in these streams due 460 

to the low UV-absorbance of mountainous headwater DOM, high turbidity [Chakrapani and 461 

Saini, 2009] and short in situ residence times. Similar to trends observed in previous studies 462 

[Hood et al., 2009; Singer et al., 2012; Spencer et al., 2014b], % BDOC increased significantly 463 

with increasing glacial coverage (Fig. 7a) and was strongly correlated with DOM chemical com-464 

position. Interestingly, the BDOC range and relationships with chemical composition presented 465 

here are similar to those observed from the Tibetan Plateau [Spencer et al., 2014b] despite the 466 

difference in filtration pore size (0.45 m in this study; 0.7 m in Spencer et al., 2014b). Alt-467 

hough future work is needed to more directly to test this result, this similarity suggests that small 468 

differences in heterotroph cell size do not exert a first-order control on DOC respiration rates in 469 

mountainous streams. 470 

To assess bioavailability as a function of composition, we regressed % BDOC against 471 

polyphenolic relative abundance using ordinary least squares (r2 = 0.83; p = 4.410-3; n = 7; Fig. 472 

7b). We emphasize that FT-ICR MS results are only semi-quantitative due to, for example, ion 473 

suppression effects (see Section 2.4, above) and that resulting composition-bioavailability re-474 
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gression relationships are likely not truly linear. Nonetheless, the linear regressions performed 475 

here remain useful for qualitatively understanding seasonal BDOC variability in the absence of 476 

more quantitative measurements. We chose polyphenolic abundance as a pseudo-conservative 477 

tracer since it exhibits little variability in the glacier/snowpack end-member (3.1 – 4.2 %; n = 3; 478 

Fig. 5g; Table S1) and is likely to exhibit minimal degradation during transit in this system. In 479 

contrast, glacier/snowpack aliphatic abundance is highly variable (19.3 – 30.4 %; n = 3; Fig. 5i; 480 

Table S1) and behaves non-conservatively, likely due to rapid consumption [Spencer et al., 481 

2015]. Still, we note that regressing % BDOC against condensed aromatic relative abundance 482 

yields identical results to those calculated here within uncertainty, further supporting the idea 483 

that bioavailability is a function of chemical composition in these samples.  484 

Assuming the observed BDOC vs. composition relationships hold for all seasons, we 485 

used the measured polyphenolic relative abundance for each sample to predict temporal changes 486 

in bioavailability. For all sites in which samples were collected for all seasons (n = 14), we find 487 

that BDOC increased from an average of 39 ± 4 % during the pre-monsoon to 54 ± 5 % during 488 

the post-monsoon (Table S1). This increase in bioavailability partially balances the observed de-489 

crease in [DOC] throughout the course of the ISM (Fig. 2a), leading to a modest decrease in 490 

BDOC concentration of only 0.06 ± 0.05 mg L-1 from pre- to post-monsoon seasons (p = 1.910-491 

3). We again emphasize that predicted seasonal BDOC trends are based on composition-492 

bioavailability regressions (Fig. 7b) and are thus likely subject to large, unknown uncertainty. 493 

Still, these results are consistent with previous studies [Singer et al., 2012] and imply only mini-494 

mal seasonal variability in BDOC concentrations throughout the Upper Ganges Basin despite 495 

large temporal [DOC] trends due to increased relative contribution of bioavailable headwater 496 

sources during the ISM and, especially, post-ISM seasons. 497 

 498 

4.4. Carbon-cycle implications and global significance 499 

The observed spatiotemporal influence of glacier-derived DOC on mountainous river carbon cy-500 

cling is likely not limited to the Upper Ganges Basin. For example, similar to our results, Spen-501 

cer et al. (2014b) showed that DOC in glaciers and glacial streams on the Tibetan Plateau con-502 

tained 12 – 16 % aliphatic relative abundance and 46 – 69 % BDOC (Fig. 7a). We therefore hy-503 

pothesize that increased contribution of bioavailable, glacier-derived DOC during the ISM and 504 

post-ISM seasons is a common feature within Himalayan rivers. 505 
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To assess DOC dynamics at the regional scale, we estimate the DOC flux exiting the 506 

Himalaya and entering the Ganges floodplain. Because discharge measurements for the year 507 

2014 at our sampling locations are not available, we approximate DOC yields using season-508 

specific discharge from 2002 – 2004 at nearby gauging stations [Chakrapani and Saini, 2009]. 509 

Although this approach will introduce large uncertainties, ISM precipitation and river discharge 510 

in the Himalaya exhibit minimal inter-annual variability [Andermann et al., 2012], and resulting 511 

yield estimates are likely robust within an order of magnitude. Results are sparse (n = 12) yet 512 

show a consistent increase in DOC yield moving downstream and a general increase during the 513 

ISM season (Table S3). By combining all data points into a single rating curve (Fig. S4) and us-514 

ing an annual average discharge at our most downstream site of ~ 750 m3 s-1 [Chakrapani and 515 

Saini, 2009], we estimate a flux of ~ 0.01 Tg DOC yr-1 and a yield of ~ 500 kg DOC km-2 yr-1 at 516 

the base of the Himalaya. Assuming a similar yield for nearby Himalayan rivers, this corre-517 

sponds to ~ 0.1 Tg DOC yr-1 exported from the Himalayan Range into the Ganges Floodplain. 518 

This yield is roughly four-fold lower than for the entire Ganges-Brahmaputra (G-B) Basin 519 

[~2200 kg DOC km-2 yr-1; Ludwig et al., 1996], consistent with our interpretation that Himalayan 520 

DOC is dominated by low-concentration ISM precipitation and glacier meltwater sources, with 521 

little contribution from flushing of surface soils and litter layers except during the pre-monsoon 522 

season. 523 

Furthermore, although more work is needed to reduce uncertainty, extend temporal rec-524 

ords, and quantify DOC fluxes, our results can begin to inform predictions on future DOC cy-525 

cling in the Upper Ganges Basin in particular and in Himalayan rivers more generally. Assuming 526 

secular trends mimic seasonal variability in terms of DOC source and composition, we expect 527 

future increases in glacier melt flux to bias exported DOM compositions toward aliphatic-rich, 528 

glaciated headwater signals in the short term (i.e. until ~ 2050; Immerzeel et al., 2013). In con-529 

trast, continued warming will eventually lead to glacier mass loss and reduced meltwater fluxes 530 

[Bolch et al., 2012; Immerzeel et al., 2013; Bliss et al., 2014; Lutz et al., 2014], likely resulting in 531 

higher DOC concentrations and more soil-like composition in the long term (i.e. a bias toward 532 

pre-monsoon conditions). However, we suggest that concomitant decreases in the fraction of 533 

DOC that is bioavailable will dampen BDOC concentration variability, thus stabilizing the abso-534 

lute flux of CO2 produced from DOC respiration in this system. 535 
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Finally, the seasonal importance of glacier-derived DOM to headwater streams is likely 536 

not limited to those draining the Himalaya. For example, Spencer et al. (2014a) observed a de-537 

pletion in 14C and an enrichment in protein-like fluorescence of DOM exported from Mendenhall 538 

Glacier, southeast Alaska, during the glacial melt season relative to the rest of the annual cycle. 539 

Combined with the strong negative relationship between 14C content and bioavailability in sam-540 

ples from the same location [Hood et al., 2009], these temporal trends suggest increased relative 541 

contribution of highly bioavailable, glacier-derived DOM during the glacier melt season, con-542 

sistent with our Upper Ganges Basin results.  543 

 544 

5. CONCLUSION 545 

Using samples collected throughout the Upper Ganges Basin in 2014, we show that DOC con-546 

centrations and DOM molecular compositions can exhibit large spatiotemporal variability in gla-547 

ciated, mountainous headwater streams. Our results revealed a sharp decrease in DOC concentra-548 

tions, aliphatic relative abundances, and condensed aromatic relative abundances with increasing 549 

glacial coverage across all seasons. In contrast, aliphatic relative abundances exhibited the oppo-550 

site trend. Similar to spatial variability, DOC concentrations, aliphatic relative abundances, and 551 

condensed aromatic relative abundances decreased progressively from pre-ISM to ISM to post-552 

ISM seasons. This observed similarity in spatial and temporal variability suggests increased 553 

downstream propagation of headwater-derived, glacier-influenced DOM as the monsoon pro-554 

gresses. 555 

 Previous studies have indicated that glacier meltwater provides highly bioavailable, ali-556 

phatic- and protein-rich DOM to headwater streams just below the glacier terminus. As our re-557 

sults demonstrate for the first time, these signals can propagate downstream for hundreds of kil-558 

ometers, especially when monsoon rains decrease soil pore-water residence times and thus lower 559 

soil-derived DOM contributions. Furthermore, although more work is needed to better quantify 560 

seasonal shifts in bioavailability, our results imply that downstream soil-derived inputs are high-561 

er in DOC concentration but are less bioavailable than glacier-derived headwater signals. Conse-562 

quently, we suggest that shifts in DOC concentration and bioavailability due to future glacier 563 

melt will largely counteract each other, thus stabilizing the absolute CO2 emission flux from 564 

DOC respiration in Himalayan rivers. 565 

 566 
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FIGURES & CAPTIONS 686 

 687 

FIG. 1: Upper Ganges Basin map. (a) Elevation (colored pixels), glacier extent (white pixels), 688 
and river network (blue lines). (b) Areal percent of catchment upstream of each sampling loca-689 
tion that is covered by glaciers. Named sub-catchments are identified by outline color in panel 690 
(b): Bhagirathi (black), Alaknanda (dark gray), Ganges downstream of confluence (light gray).  691 
The Gangotri glacier group is outlined with a dotted red line in both panels. For both panels, riv-692 
er sampling locations are separated into main-stem (black) or tributary (white) for the Bhagirathi 693 
(circles), Alaknanda (squares), and Ganges (triangles) Rivers. Glacier and snowpack sampling 694 
locations are additionally shown as gray diamonds. (c) Seasonally (left three panels) and annual-695 
ly (right-most panel) averaged precipitation amounts throughout the basin based on 10 years of 696 
satellite measurements [Bookhagen and Burbank, 2010]. (d) Inset showing the study region loca-697 
tion (red square) within South Asia. 698 

699 
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 700 

FIG. 2: Spatiotemporal trends in DOC concentration. (a) Box plots of [DOC] for all river sam-701 
ples separated by season, showing the median (thick gray line), inter quartile range (box), 95 % 702 
confidence interval (whiskers), and outliers (black circles). (b) [DOC] as a function of upstream 703 
glacial coverage. Markers are separated into pre-monsoon (circles), monsoon (triangles), and 704 
post-monsoon (squares) for main-stem (black) and tributary (white) samples. Analytical [DOC] 705 
uncertainty is additionally shown as ± 1 in panel (b). 706 
  707 



 26 

 708 
FIG. 3: Spatiotemporal trends in DOM chemical diversity. (a) Box plots showing the number of 709 
detected formulae for all river samples separated by season. Box plots represent the median 710 
(thick gray line), inter quartile range (box), and 95 % confidence interval (whiskers) for each 711 
population. (b) Scatter plot showing the number of detected formulae for all river samples as a 712 
function of [DOC]. Markers are separated into pre-monsoon (circles), monsoon (triangles), and 713 
post-monsoon (squares) for main-stem (black) and tributary (white) samples. 714 

 715 
716 
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 717 
FIG. 4: DOM molecular composition as a function of (a) [DOC], (b) glacier coverage, and (c) 718 
season, plotted in van Krevelen space. Colors represent the correlation coefficient (s) between 719 
the relative intensity of each molecular formula as determined by FT-ICR MS and a given envi-720 
ronmental variable [color bar in (c) applies to all panels]. Red formulae are more abundant in 721 
samples described by higher values of a given environmental variable whereas blue formulae are 722 
more abundant in samples described by lower values of a given environmental variable. For pan-723 
el (c), season has been replaced by a dummy variable (pre-ISM = 1, ISM = 2, post-ISM = 3). On-724 
ly formulae that are detected in all river samples and are significantly correlated with a given en-725 
vironmental variable (p ≤ 0.05) are shown. |s| refers to the mean () and standard deviation () 726 
of the absolute value of s for all retained formulae in a given panel. 727 
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 728 

FIG. 5: Spatiotemporal trends in DOM composition. (a-c) Box plots showing the relative abun-729 
dance of polyphenolic, condensed aromatic, and aliphatic formulae for all river samples separat-730 
ed by season. Box plots represent the median (thick gray line), inter quartile range (box), 95 % 731 
confidence interval (whiskers), and outliers (black circles) for each population. Scatter plots 732 
showing the relative abundance of each compound class for all river samples as a function of (d-733 
f) [DOC] and (g-i) glacier coverage. Markers are separated into pre-monsoon (circles), monsoon 734 
(triangles), and post-monsoon (squares) for main-stem (black) and tributary (white) samples. The 735 
range of glacier/snowpack relative abundances for each compound class are additionally shown 736 
in panels (g-h) as red bars. Note broken y axes in panels (c), (f), and (i). 737 
  738 
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 739 
FIG. 6: [DOC] as a function of time for bioavailability incubations. Sample IDs correspond to 740 
those presented in Table S1. Error bars for triplicate measurements (± 1) are smaller than mark-741 
er points (typically ± 1 – 2 %). 742 
  743 
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 744 
FIG. 7: Environmental and compositional controls on DOC bioavailability. Percent bioavailable 745 
DOC (% BDOC) during 28-day incubations as a function of (a) glacial coverage and (b) relative 746 
FT-ICR MS abundance of polyphenolic formulae. Markers are separated into river (black) and 747 
snow/ice (white) samples as reported in this study (circles), Hood et al. [2009] (Gulf of Alaska; 748 
triangles), and Spencer et al. [2014b] (Tibetan Plateau; diamonds). For panel (b), solid black line 749 
is the ordinary least squares (OLS) regression line, dark gray envelope is the ± 1 uncertainty, 750 
and light gray envelope is the 95 % confidence interval. 751 
  752 
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SUPPORTING INFORMATION TABLE CAPTIONS 753 
Table S1: All DOC, geomorphic, and geospatial results for all samples in this study. 754 

Table S2: Chemical formulae and intra-sample relative abundances for all detected compounds. 755 

Table S3: Discharge and DOC flux estimates for rivers draining the Upper Ganges Basin.  756 
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SUPPORTING INFORMATION FIGURES & CAPTIONS 757 

 758 
FIG. S1: [DOC] as a function of catchment relief ratio. Markers are separated into pre-monsoon 759 
(circles), monsoon (triangles), and post-monsoon (squares) for main-stem (black) and tributary 760 
(white) samples. Analytical [DOC] uncertainty is additionally shown as ± 1.  761 
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 762 
FIG. S2: DOM molecular composition as a function of catchment relief ratio, plotted in van 763 
Krevelen space. Colors represent the correlation coefficient (s) between the relative intensity of 764 
each molecular formula as determined by FT-ICR MS and relief ratio. Red formulae are more 765 
abundant in samples described by higher relief ratio whereas blue formulae are more abundant in 766 
samples described by lower relief ratio. Only formulae that are detected in all river samples and 767 
are significantly correlated with relief ratio (p ≤ 0.05) are shown. |s| refers to the mean () and 768 
standard deviation () of the absolute value of s for all retained formulae in a given panel.  769 
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 770 
FIG. S3: Scatter plots showing the relative abundance of (a) polyphenolic and (b) condensed ar-771 
omatic formulae as a function of catchment relief ratio. Markers are separated into pre-monsoon 772 
(circles), monsoon (triangles), and post-monsoon (squares) for main-stem (black) and tributary 773 
(white) samples. 774 
  775 
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 776 
 777 
FIG. S4: Discharge vs. DOC flux rating curve for the Upper Ganges Basin using our [DOC] data 778 
and discharge data from nearby gauging stations from the years 2002 – 2004 [Chakrapani and 779 
Saini, 2009]. Dark gray envelope is the OLS regression ± 1 uncertainty and light gray envelope 780 
is the 95 % confidence interval. Dashed line is the annual average discharge at our most down-781 
stream sampling location (~ 750 m3 s-1). Because discharge data are sparse and were collected 10 782 
years prior to our DOC sample collection, resulting DOC fluxes contain large, unknown uncer-783 
tainty and should only be interpreted within an order of magnitude. 784 


