4 research outputs found
Phenotypic and cytogenetic spectrum of 9p trisomy
Trisomy 9p is one of the most frequent autosomal anomalies compatible with long survival rate. The spectrum of clinical severity in trisomy 9 roughly correlates with the extent of trisomic chromosome material. Trisomy 9p is a clinically well delineated syndrome and of all stigmata craniofacial dysmorphism is most specific. In this study we report five cases with de novo trisomy 9p. The study aimed at the identification of the genotype/phenotype correlations in patients with different breakpoints. GTG banding, DAPI stain, whole chromosome paint, centromere, telomere and 9p21 specific locus probes demonstrated that partial trisomy 9p in case 1 was due to isochromosome 9p with translocation of the long arm of re-arranged chromosome 9 onto the short arm of chromosome 13, cases 2 and 3 had intrachromosomal duplication of the short arm of chromosome 9 [dup(9)(p21p24)], case 4 had "classical" 9p trisomy and case 5 had duplication of whole short arm and part of the long arm of chromosome 9 (partial 9 trisomy). Although cases 1 to 4 had trisomy involving 9p, cases 1 and 2 exhibited the classical clinical manifestations of 9p trisomy, while cases 3 and 4 had additional features overlapping with Coffin-Siris syndrome. The present study strengthens the association of Coffin-Siris syndrome and 9p, the significance of such observations may point to possible gene location of Coffin-Siris syndrome on 9p. Case 5 had additional manifestations more than those typical of trisomy 9p which could be due to duplication of 9q21 region. Wide gap between 1st and 2nd toes, observed in the studied cases, can be added to the phenotype of this trisomy. Three of our cases had brain malformations, case 3 had dilated ventricles with hypogenesis of corpus callosum, case 4 had agenesis of corpus callosum, and case 5 had Dandy-Walker malformation. We also suggest that dosage effects of genes located in 9pter-q22 contribute to the etiology of Dandy-Walker syndrome. We recommend MRI studies as a routine in all cases with trisomy 9p
IGF1R, IGFALS, and IGFBP3 gene copy number variations in a group of non-syndromic Egyptian short children
Abstract Background Insulin-like growth factor-1 (IGF-1) is required for normal intrauterine and postnatal growth, and this action is mediated through IGF1 receptor (IGF1R). IGF1R copy number variants (CNVs) can cause pre- and postnatal growth restriction, affecting an individual’s height. In this study, we used multiplex ligation-dependent probe amplification (MLPA) to detect CNVs in IGF1R, IGFALS, and IGFBP3 genes in the diagnostic workup of short stature for 40 Egyptian children with short stature. Results We detected a heterozygous deletion of IGF1R (exons 4 through 21) in 1 out of the 40 studied children (2.5%). Meanwhile, we did not detect any CNVs in either IGFALS or IGFBP3. Conclusion The diagnostic workup of short stature using MLPA for CNVs of IGF1R and other recognized height-related genes, such as SHOX and GH, in non-syndromic short stature children can be a fast and inexpensive diagnostic tool to recognize a subcategory of patients in which growth hormone treatment can be considered
Clinical and genetic characterization of ten Egyptian patients with Wolf–Hirschhorn syndrome and review of literature
Abstract Background Wolf–Hirschhorn syndrome (WHS) (OMIM 194190) is a multiple congenital anomalies/intellectual disability syndrome. It is caused by partial loss of genetic material from the distal portion of the short arm of chromosome. Methods We studied the phenotype–genotype correlation. Results We present the clinical manifestations and cytogenetic results of 10 unrelated Egyptian patients with 4p deletions. Karyotyping, FISH and MLPA was performed for screening for microdeletion syndromes. Array CGH was done for two patients. All patients exhibited the cardinal clinical manifestation of WHS. FISH proved deletion of the specific WHS locus in all patients. MLPA detected microdeletion of the specific locus in two patients with normal karyotypes, while array CGH, performed for two patients, has delineated the extent of the deleted segments and the involved genes. LETM1, the main candidate gene for the seizure phenotype, was found deleted in the two patients tested by array CGH; nevertheless, one of them did not manifest seizures. The study emphasized the previous. Conclusion WHS is a contiguous gene syndrome resulting from hemizygosity of the terminal 2 Mb of 4p16.3 region. The Branchial fistula, detected in one of our patients is a new finding that, to our knowledge, was not reported