13 research outputs found
Objektiv strukturierte Bewertung einer Hautnaht am Modell : ist die direkte Beobachtung der video-basierten Beobachtung überlegen? ; Poster
Poster Einleitung: OSCEs werden immer häufiger in der Ausbildung von Studierenden eingesetzt. Die Einführung eines OSCEs im fach Chirurgie ist in Planung. Durch die große Anzahl von Studierenden pro Semester oder Studienjahr (400 Studierende in Frankfurt) ist die Durchführung einer OSCE Prüfung mit großem personellen Aufwand verbunden. Vor allem während der Prüfung müssen eine Vielzahl von Chirurgen simultan zu Prüfungszwecken zur Verfügung stehen. Ziel der Studie war es, zu überprüfen, ob eine video-basierte Bewertung einer „Nahtstation“ zu einem späteren Zeitpunkt zu gleichen Ergebnissen in der Bewertung der Leistung der Studierenden führt. Methode: 33 Studierende führten unter standardisierten Bedingungen eine Hautnaht an einem Modell durchzuführen. Die Studierenden wurden während der Prozedur von zwei prüfenden Chirurgen und zwei Studierenden im PJ (praktischen Jahr) beobachtet und anhand einer objektiv strukturierten Checkliste bewertet (Prozessevaluation). Die Prozedur wurde gleichzeitig auf Video aufgezeichnet und zu einem späteren Zeitpunkt zwei weiteren Chirurgen und zwei weiteren Studierenden im PJ zur Bewertung gezeigt. Ergebnisse: Der Vergleich zwischen "live“-prüfenden und "video“-prüfenden Chirurgen zeigt eine signifikant hohe Korrelation (r=0,87; p<0,01) und eine hohe Übereinstimmung (88,2%) in der Bewertung. Ebenso zeigen die prüfenden PJler eine signifikant hohe Korrelation (r=0,84; p<0,01). Die Übereinstimmung ist bei den PJlern mit (82.4%) etwas niedriger als bei den beteiligten Chirurgen. Zusammenfassung: Mit dieser Studie konnte zeigt werden, daß es bei der Beurteilung der Performance von Studierenden bei einer Hautnaht am Modell unter Anwendung von objektiv strukturierten Checklisten möglich ist, eine direkte Beobachtung der Studierenden durch eine video-basierte Beobachtung zu ersetzen. Eine "Nahtstation“ in einem OSCE kann somit während der Prüfungszeit ohne Prüfer auskommen und im Anschluß bewertet werden
Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease
The epsilon4 allele of apolipoprotein E (APOE) and traumatic brain injury (TBI) are both risk factors for the development of Alzheimer's disease (AD). These factors may act synergistically, in that APOE4+ individuals are more likely to develop dementia after TBI. Because the mechanism underlying these effects is unclear, we questioned whether APOE4 and TBI interact either through effects on amyloid-beta (Abeta) or by enhancing cell death/tissue injury. We assessed the effects of TBI in PDAPP mice (transgenic mice that develop AD-like pathology) expressing human APOE3 (PDAPP:E3), human APOE4 (PDAPP:E4), or no APOE (PDAPP:E-/-). Mice were subjected to a unilateral cortical impact injury at 9-10 months of age and allowed to survive for 3 months. Abeta load, hippocampal/cortical volumes, and hippocampal CA3 cell loss were quantified using stereological methods. All of the groups contained mice with Abeta-immunoreactive deposits (56% PDAPP:E4, 20% PDAPP:E3, 75% PDAPP:E-/-), but thioflavine-S-positive Abeta (amyloid) was present only in the molecular layer of the dentate gyrus in the PDAPP:E4 mice (44%). In contrast, our previous studies showed that in the absence of TBI, PDAPP:E3 and PDAPP:E4 mice have little to no Abeta deposition at this age. After TBI, all of the Abeta deposits present in PDAPP:E3 and PDAPP:E-/- mice were diffuse plaques. In contrast to the effect of APOE4 on amyloid, PDAPP:E3, PDAPP:E4, and PDAPP:E-/- mice did not differ in the amount of brain tissue or cell loss. These data support the hypothesis that APOE4 influences the neurodegenerative cascade after TBI via an effect on Abeta
Predictors of pulmonary failure following severe trauma: a trauma registry-based analysis
Background: The incidence of pulmonary failure in trauma patients is considered to be influenced by several factors such as liver injury. We intended to assess the association of various potential predictors of pulmonary failure following thoracic trauma and liver injury.
Methods: Records of 12,585 trauma patients documented in the TraumaRegister DGU® of the German Trauma Society were analyzed regarding the potential impact of concomitant liver injury on the incidence of pulmonary failure using uni- and multivariate analyses. Pulmonary failure was defined as pulmonary failure of ≥ 3 SOFA-score points for at least two days. Patients were subdivided according to their injury pattern into four groups: group 1: AIS thorax < 3; AIS liver < 3; group 2: AIS thorax ≥ 3; AIS liver < 3; group 3: AIS thorax < 3; AIS liver ≥ 3 and group 4: AIS thorax ≥ 3; AIS liver ≥ 3.
Results: Overall, 2643 (21%) developed pulmonary failure, 12% (n= 642) in group 1, 26% (n= 697) in group 2, 16% (n= 30) in group 3, and 36% (n= 188) in group 4. Factors independently associated with pulmonary failure included relevant lung injury, pre-existing medical conditions (PMC), sex, transfusion of more than 10 units of packed red blood cells (PRBC), Glasgow Coma Scale (GCS) ≤ 8, and the ISS. However, liver injury was not associated with an increased risk of pulmonary failure following severe trauma in our setting.
Conclusions: Specific factors, but not liver injury, were associated with an increased risk of pulmonary failure following trauma. Trauma surgeons should be aware of these factors for optimized intensive care treatment
Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA.
Object: This study investigates the outcome after traumatic brain injury (TBI) in mice lacking the essential DNA repair gene xeroderma pigmentosum group A (XPA). As damage to DNA has been implicated in neuronal cell death in various models, the authors sought to elucidate whether the absence of an essential DNA repair factor would affect the outcome of TBI in an experimental setting. Methods: Thirty-seven adult mice of either wild-type (n = 18) or XPA-deficient ("knock-out" [n = 19]) genotype were subjected to controlled cortical impact experimental brain trauma, which produced a focal brain injury. Sham-injured mice of both genotypes were used as controls (9 in each group). The mice were subjected to neurobehavoral tests evaluating learning/acquisition (Morris water maze) and motor dysfunction (Rotarod and composite neuroscore test), pre- and postinjury up to 4 weeks. The mice were killed after 1 or 4 weeks, and cortical lesion volume, as well as hippocampal and thalamic cell loss, was evaluated. Hippocampal staining with doublecortin antibody was used to evaluate neurogenesis after the insult. Results: Brain-injured XPA(-/-) mice exhibited delayed recovery from impairment in neurological motor function, as well as pronounced cognitive dysfunction in a spatial learning task (Morris water maze), compared with injured XPA(+/+) mice (p < 0.05). No differences in cortical lesion volume, hippocampal damage, or thalamic cell loss were detected between XPA(+/+) and XPA(-/-) mice after brain injury. Also, no difference in the number of cells stained with doublecortin in the hippocampus was detected. Conclusions: The authors' results suggest that lack of the DNA repair factor XPA may delay neurobehavioral recovery after TBI, although they do not support the notion that this DNA repair deficiency results in increased cell or tissue death in the posttraumatic brain
Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease
The epsilon4 allele of apolipoprotein E (APOE) and traumatic brain injury (TBI) are both risk factors for the development of Alzheimer's disease (AD). These factors may act synergistically, in that APOE4+ individuals are more likely to develop dementia after TBI. Because the mechanism underlying these effects is unclear, we questioned whether APOE4 and TBI interact either through effects on amyloid-beta (Abeta) or by enhancing cell death/tissue injury. We assessed the effects of TBI in PDAPP mice (transgenic mice that develop AD-like pathology) expressing human APOE3 (PDAPP:E3), human APOE4 (PDAPP:E4), or no APOE (PDAPP:E-/-). Mice were subjected to a unilateral cortical impact injury at 9-10 months of age and allowed to survive for 3 months. Abeta load, hippocampal/cortical volumes, and hippocampal CA3 cell loss were quantified using stereological methods. All of the groups contained mice with Abeta-immunoreactive deposits (56% PDAPP:E4, 20% PDAPP:E3, 75% PDAPP:E-/-), but thioflavine-S-positive Abeta (amyloid) was present only in the molecular layer of the dentate gyrus in the PDAPP:E4 mice (44%). In contrast, our previous studies showed that in the absence of TBI, PDAPP:E3 and PDAPP:E4 mice have little to no Abeta deposition at this age. After TBI, all of the Abeta deposits present in PDAPP:E3 and PDAPP:E-/- mice were diffuse plaques. In contrast to the effect of APOE4 on amyloid, PDAPP:E3, PDAPP:E4, and PDAPP:E-/- mice did not differ in the amount of brain tissue or cell loss. These data support the hypothesis that APOE4 influences the neurodegenerative cascade after TBI via an effect on Abeta