621 research outputs found

    History of Metal Pollution and Carbon Input in Baltic Sea Sediments

    Get PDF

    Development of glacial and interglacial conditions in the Nordic seas between 1.5 and 0.35 Ma

    Get PDF
    Sedimentological and geochemical proxy records of a deep-sea sediment core from the southern central Nordic seas were used to reconstruct the development of glacial and interglacial conditions during the Early and Middle Pleistocene, i.e., late Matuyama to middle Brunhes Chron (1.5–0.35 Ma). An enhancement of both glacial and interglacial characteristics is observed during early Brunhes oxygen isotope stages (OIS) 16 and 15, respectively. Any intensification of the climatic conditions prior to this, as was previously described for the eastern part of the Nordic seas, is not recognized at our study site. It is further shown that the glacial–interglacial environmental contrasts increased from the early to the middle Bruhnes Chron. Of all glacial periods investigated OIS 12 is characterized by the most severe conditions, showing both maximum input of iceberg-rafted debris (IRD) as well as planktic foraminiferal δ18O values comparable to those of the Last Glacial Maximum. Among the interglaciations, OIS 11 is by far the longest interval and the first to show fully developed interglacial conditions, i.e., Holocene-like δ18O values and a minimum of IRD deposition. Hence, our comparison supports bottom water δ18O studies that have indicated the existence of a gradual intensification of glacial–interglacial climate contrasts during the Middle Pleistocene

    Holocene sea level rise in the western Baltic and the question of isostatic subsidence

    Get PDF
    Sea level related radiocarbon, palynological and stratigraphical data from sediment cores in the Western Baltic have been tested against the existing sea level curves for the region. The relative sea level rise curves for the beginning of the Holocene show no significant deviations between the Kiel, Mecklenburg und Lübeck Bays and hence do not support the previously reported differences in the averaged regional subsidence rates for this time interval. Local subsidence and upheaval due to salt tectonics probably played a greater role than previously suspected in the region. The sea level possibly stagnated around -28 m during the early Holocene before rising very rapidly to -14 m. The submarine terraces at -30 m and perhaps also at -27 m were formed during the lacustrine phase of the Western Baltic when the water levels were controlled by the main thresholds in the Great Belt

    A paleoclimatic evaluation of marine oxygen isotope stage 11 in the high-northern Atlantic (Nordic seas)

    Get PDF
    A sediment core from the high latitude of the Northern Atlantic (Nordic seas) was intensively studied by means of biogeochemical, sedimentological, and micropaleontological methods. The proxy records of interglacial marine oxygen isotope stage (MIS) 11 are directly compared with records from the Holocene (MIS 1), revealing that many features of MIS 11 are rather atypical for an interglaciation at these latitudes. Full-interglacial conditions without deposition of ice-rafted debris existed in MIS 11 for about 10 kyr (∼398–408 ka). This time is marked by the lightest d18O values in benthic foraminifera, indicating a small global ice volume, and by the appearance of subpolar planktic foraminifera, indicating a northward advection of Atlantic surface water. A comparison with MIS 1, using the same proxies, implies that surface temperatures were lower and global ice volume was larger during MIS 11. A comparative study of the ratio between planktic and benthic foraminifera also reveals strong differences among the two intervals. These data imply that the coupling between surface and bottom bioproductivity, i.e., the vertical transportation of the amount of fresh organic matter, was different in MIS 11. This is corroborated by a benthic fauna in MIS 11, which contains no epifaunally-living species. Despite comparable values in carbonate content (%), reflectance analyses of the total sediment (greylevel) show much higher values for MIS 11 than for MIS 1. These high values are attributed to increased corrosion of foraminiferal tests, directly affecting the sediment greylevel. The reason for this enhanced carbonate corrosion in MIS 11 remains speculative, but may be linked to the global carbon cycle

    Stable oxygen and carbon isotopes in modern benthic foraminifera from the Laptev Sea shelf: implications for reconstructing proglacial and profluvial environments in the Arctic

    Get PDF
    Measurements of δ18O and δ13C isotopes in three benthic foraminiferal species from surface sediments of the eastern Laptev Sea are compared to water δ18O values and δ13C values of dissolved inorganic carbon (DIC). Samples investigated originate from two environmentally contrasting core locations, which are influenced by riverine freshwater runoff to a varying degree. At the river-distal site, located within relatively stable marine conditions on the outer shelf, Elphidiella groenlandica, Haynesina orbiculare and Elphidium excavatum forma clavata show a positive specific offset of 1.4‰, 1.5‰ and 1‰, respectively, in their δ18O values relative to the expected value for inorganic calcite precipitated under equilibrium conditions. At the site close to the Lena River confluence, with enhanced seasonal hydrographic contrasts, calculated δ18O offsets in E. groenlandica and in H. orbiculare remain about the same whereas E. e. clavata displays a distinctly negative offset of −1.8‰. The δ18O variation in E. e. clavata is interpreted as a vital effect, a finding which limits the potential of this species for reconstructing freshwater-influenced shelf paleoenvironments on the basis of oxygen isotopes. This interpretation gains support when comparing foraminiferal δ13C with the δ13CDIC of the water. While some of the difference in the carbonate δ13C seems to be controlled by a riverine-related admixture of DIC, clearly defined δ13C ranges in each of the three foraminifera at the river-proximal site shows that also the carbon isotopic signature in E. e. clavata is particularly affected by environmental factors

    Surface and deep water changes in the subpolar North Atlantic during Termination II and the Last Interglaciation

    Get PDF
    To reconstruct the history of water mass exchange between the NE Atlantic and the Nordic seas, sediment cores from ∼2 km water depth were studied across Termination II (TII) and through the last interglaciation (MIS5e). During early TII the sudden appearance of the low-latitude planktonic foraminifera Beella megastoma is noted in both regions along with a steep decrease in benthic foraminiferal δ18O. Since other proxies indicate that surface waters were cold and stratified because of meltwater, conditions which prevented near-surface thermohaline circulation and vertical convection in the Nordic seas, water mass exchange between the two areas occurred at the subsurface. During later TII, surface conditions changed, and this subsurface circulation style was eventually replaced by vertical convection. In the Nordic seas, B. megastoma vanished from the record together with ice-rafted debris (IRD) at the end of TII, while subpolar foraminiferal abundance rose. Peak interglacial conditions with intensive vertical convection now fully developed, generating a bottom water temperature gradient of ∼4°C between the two areas. However, surface water temperatures deteriorated in the Nordic seas already notably before IRD recurred, and δ18O increased at the end of MIS5e
    • …
    corecore