760 research outputs found

    A Comparison of Norm-Referenced, Traditional, and Computer-Assisted Language Assessments

    Get PDF
    Current literature in the field of communication disorders suggests that traditional norm-referenced tests may yield erroneous or misleading information regarding a child\u27s level of language acquisition. Additional research suggests that the most valid and reliable technique for determining a client\u27s level of linguistic expertise is language sampling and analysis. Language sampling and analysis has traditionally been rejected as a means of evaluation, especially for the school-age child, due to the length of time necessary to complete such analyses. In recent years, language sampling and analysis techniques have been redesigned as computer software application programs. Computer software application programs may significantly reduce the time required to complete language sampling and analysis and increase the application of this validated method of language assessment. Implementation of language sampling and analysis procedures through software application would reduce the reliance on traditional norm-referenced tests thereby increasing the reliability and validity of language assessments. The purpose of this research was to compare both the time required and the time to data ratio in three assessment paradigms. These paradigms include the traditional norm-referenced assessment, the traditional by-hand language sampling and computer-assisted language analysis procedure, and the sampling and analysis procedure. Significant differences among assessment times suggested that computer-assisted langauge analysis took significantly less time than manual language sample analysis. Analysis of time/data ratio indicated that computer-assisted analysis provided the most information per unit of time. These results supported the use of computer-assisted software programs for speech and language service providers

    The polar and subpolar North Atlantic during the last five glacial-interglacial cycles

    Get PDF
    The main goal of this study was to determine Late Quatemary climatic variations of the high northern latitudes on glacial-interglacial as well as on millennial time-scales using a range of paleoceanographic proxy records, i.e., sediment color, carbonate content, ice-rafted debris (IRD), stable oxygen isotopes, and carbonate preservation, from deep-sea sediments from the Northeast Atlantic Ocean and the Nordic Seas. (...

    Glacial-interglacial records of the reflectance of sediments from the Norwegian-Greenland-Iceland Sea (Nordic seas)

    Get PDF
     The reflectance of sediments (gray level) were measured on 11 sediment cores from the Norwegian–Greenland–Iceland Sea (Nordic seas). The analyzed time interval covers the past five glacial–interglacial cycles. Although the results demonstrate that the gray-level method has a potential for stratigraphic purposes, it is indicated that gray-level changes in the Nordic seas are not necessarily driven by variations in the content of biogenic calcite. A detailed comparison of gray-level values with contents of total CaCO3 (carbonate) and total organic carbon (TOC) reveals no overall causal link between these proxies. However, specific glacial core sections with layers containing organic-rich sediment clasts as a consequence of iceberg-rafting seem to correlate well with law gray-level values. Of those cores which show relatively high and comparable carbonate values in the last three main interglacial intervals (stages 11, 5.5, and 1), stage 11 is always marked by the highest gray-level values. A close inspection of the surface structure of the foraminiferal tests as well as the conduction of reflectance measurements on these tests leads to the conclusion that enhanced carbonate corrosion occurred during stage 11. The test corrosion not only affected the reflectance of the tests by making them appear whiter, it also seems responsible for the comparatively high gray-level values of the total sediment in stage 11. In contrast, the relatively low gray-level values found in stages 5.5, and 1 are not associated with enhanced test corrosion. This observation implies that variable degrees of carbonate corrosion can have a profound effect on total sediment reflectance

    Comparison of glacial and interglacial conditions between the polar and the subpolar North Atlantic Region over the past five climate cycles

    Get PDF
    A multiparameter-based interpretation of sediment records from the northeast Atlantic and the western Nordic seas suggests that during the last 500,000 years only in marine isotopes stage (MIS) 11, 5e, and 1 were there somewhat comparable interglacial boundary conditions in both regions, i.e., strongly reduced occurrence of iceberg-rafted debris (IRD) and high carbonate bioproductivity. Although the northeast Atlantic experienced such conditions during all peak interglaciations, with the exception of MIS 7, planktic foraminiferal δ18O from this region would still indicate that significantly colder sea surface temperatures (SST) prevailed during MIS 11 than during MIS 9, 5e, and 1. This assumption is corroborated by a continuous input of IRD into the western Nordic seas during MIS 11, implying a much steeper SST gradient between the polar and subpolar region and an overall reduced thermohaline activity in the polar latitudes. The iceberg proxy also reveals that maximum IRD discharge always happened during the final phase of glaciation and into early deglaciation (terminations). As these IRD records from the two regions are characterized by a high time coherency, it is concluded that short-term variability is a persistent feature of the glacial climate system

    The Cytoskeleton Under External Fluid Mechanical Forces: Hemodynamic Forces Acting on the Endothelium

    Get PDF
    The endothelium, a single layer of cells that lines all blood vessels, is the focus of intense interest in biomechanics because it is the principal recipient of hemodynamic shear stress. In arteries, shear stress has been demonstrated to regulate both acute vasoregulation and chronic adaptive vessel remodeling and is strongly implicated in the localization of atherosclerotic lesions. Thus, endothelial biomechanics and the associated mechanotransduction of shear stress are of great importance in vascular physiology and pathology. Here we discuss the important role of the cytoskeleton in a decentralization model of endothelial mechanotransduction. In particular, recent studies of four-dimensional cytoskeletal motion in living cells under external fluid mechanical forces are summarized together with new data on the spatial distribution of cytoskeletal strain. These quantitative studies strongly support the decentralized distribution of luminally imposed forces throughout the endothelial cell

    Imaging Live Cells Under Mechanical Stress

    Get PDF
    Cellular responses to mechanical stimuli are implicated in the structural and functional adaptation of many tissues. For example, cellular mechanisms mediate bone and skeletal muscle remodeling during mechanical loading, lung function during ventilator-induced injury, hearing loss in the inner ear, and blood flow-mediated cardiovascular pathophysiology. Since much of our own work investigates vascular biomechanics, we will focus in this chapter on the techniques used to study vascular endothelial cells in vitro; however, similar techniques can be used to study other cell types

    Contrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka

    Get PDF
    Variations in the poleward-directed Atlantic heat transfer was investigated over the past 135 ka with special emphasis on the last and present interglacial climate development (Eemian and Holocene). Both interglacials exhibited very similar climatic oscillations during each preceding glacial terminations (deglacial TI and TII). Like TI, also TII has pronounced cold–warm–cold changes akin to events such as H1, Bølling/Allerød, and the Younger Dryas. But unlike TI, the cold events in TII were associated with intermittent southerly invasions of an Atlantic faunal component which underscores quite a different water mass evolution in the Nordic Seas. Within the Eemian interglaciation proper, peak warming intervals were antiphased between the Nordic Seas and North Atlantic. Moreover, inferred temperatures for the Nordic Seas were generally colder in the Eemian than in the Holocene, and vice versa for the North Atlantic. A reduced intensity of Atlantic Ocean heat transfer to the Arctic therefore characterized the Eemian, requiring a reassessment of the actual role of the ocean–atmosphere system behind interglacial, but also, glacial climate changes. Key Points - Reduced AMOC during the Eemian - BA/YD-type warming/cooling in Termination 1 and 2 - Comparison of glacial inceptions reveals present climate statu

    Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11

    Get PDF
    Proxy records from a core site off Northwest Africa were generated and compared with data from the subpolar Northeast Atlantic to unravel some main climatic features of interglacial marine isotope stage (MIS) 11 (423–362 ka). The records point to an almost 25 kyr lasting full interglacial period during stage 11 that was preceded by a considerably long glacial-interglacial transition (Termination V). Off NW Africa, a strong reduction of terrestrially derived iron input is noted after 420 ka suggesting a pronounced increase in continental humidity and vegetation cover over Northwest Africa. In analogy to the Holocene climate of the region, this early wet phase of MIS 11 was likely associated with enhanced influence of the West African monsoon system on the Saharan-Sahel region which led to both a reduction in trade wind intensity off NW Africa and the formation of sapropel S11 in the Mediterranean Sea. A detailed comparison with data from the subpolar North Atlantic indicates a remarkable coherent timing for the main environmental changes in both regions giving evidence for strong interglacial climate connection between the low and high latitude North Atlantic. Although our records of MIS 11 compare well with the Holocene in terms of some major climate characteristics there are distinct differences in the temporal evolution of each peak warm interval. This suggests that care should be taken when using MIS 11 as analogue to forecast future interglacial conditions

    A paleoclimatic evaluation of marine oxygen isotope stage 11 in the high-northern Atlantic (Nordic seas)

    Get PDF
    A sediment core from the high latitude of the Northern Atlantic (Nordic seas) was intensively studied by means of biogeochemical, sedimentological, and micropaleontological methods. The proxy records of interglacial marine oxygen isotope stage (MIS) 11 are directly compared with records from the Holocene (MIS 1), revealing that many features of MIS 11 are rather atypical for an interglaciation at these latitudes. Full-interglacial conditions without deposition of ice-rafted debris existed in MIS 11 for about 10 kyr (∼398–408 ka). This time is marked by the lightest d18O values in benthic foraminifera, indicating a small global ice volume, and by the appearance of subpolar planktic foraminifera, indicating a northward advection of Atlantic surface water. A comparison with MIS 1, using the same proxies, implies that surface temperatures were lower and global ice volume was larger during MIS 11. A comparative study of the ratio between planktic and benthic foraminifera also reveals strong differences among the two intervals. These data imply that the coupling between surface and bottom bioproductivity, i.e., the vertical transportation of the amount of fresh organic matter, was different in MIS 11. This is corroborated by a benthic fauna in MIS 11, which contains no epifaunally-living species. Despite comparable values in carbonate content (%), reflectance analyses of the total sediment (greylevel) show much higher values for MIS 11 than for MIS 1. These high values are attributed to increased corrosion of foraminiferal tests, directly affecting the sediment greylevel. The reason for this enhanced carbonate corrosion in MIS 11 remains speculative, but may be linked to the global carbon cycle
    • …
    corecore