182 research outputs found

    Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging

    Get PDF
    We introduce an imaging modality that, by offsetting pixel-exposure times during capture of a single image frame, embeds temporal information in each frame. This allows simultaneous acquisition of full-resolution images at native detector frame rates and high-speed image sequences at reduced resolution, without increasing bandwidth requirements. We demonstrate this method using macroscopic and microscopic examples, including imaging calcium transients in heart cells at 250 Hz using a 10-Hz megapixel camera

    First Physics Results at the Physical Pion Mass from Nf=2N_f = 2 Wilson Twisted Mass Fermions at Maximal Twist

    Full text link
    We present physics results from simulations of QCD using Nf=2N_f = 2 dynamical Wilson twisted mass fermions at the physical value of the pion mass. These simulations were enabled by the addition of the clover term to the twisted mass quark action. We show evidence that compared to previous simulations without this term, the pion mass splitting due to isospin breaking is almost completely eliminated. Using this new action, we compute the masses and decay constants of pseudoscalar mesons involving the dynamical up and down as well as valence strange and charm quarks at one value of the lattice spacing, aā‰ˆ0.09a \approx 0.09 fm. Further, we determine renormalized quark masses as well as their scale-independent ratios, in excellent agreement with other lattice determinations in the continuum limit. In the baryon sector, we show that the nucleon mass is compatible with its physical value and that the masses of the Ī”\Delta baryons do not show any sign of isospin breaking. Finally, we compute the electron, muon and tau lepton anomalous magnetic moments and show the results to be consistent with extrapolations of older ETMC data to the continuum and physical pion mass limits. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.Comment: 45 pages, 15 figure

    The Euler-Maruyama approximation for the absorption time of the CEV diffusion

    Full text link
    A standard convergence analysis of the simulation schemes for the hitting times of diffusions typically requires non-degeneracy of their coefficients on the boundary, which excludes the possibility of absorption. In this paper we consider the CEV diffusion from the mathematical finance and show how a weakly consistent approximation for the absorption time can be constructed, using the Euler-Maruyama scheme

    Dynamical Mean-Field Theory

    Full text link
    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems", edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure

    Supersolid state of ultracold fermions in an optical lattice

    Full text link
    We study ultracold fermionic atoms trapped in an optical lattice with harmonic confinement by means of the dynamical mean-field approximation. It is demonstrated that a supersolid state, where an s-wave superfluid coexists with a density-wave state with a checkerboard pattern, is stabilized by attractive onsite interactions on a square lattice. Our new finding here is that a confining potential plays an invaluable role in stabilizing the supersolid state. We establish a rich phase diagram at low temperatures, which clearly shows how the insulator, the density wave and the superfluid compete with each other to produce an intriguing domain structure. Our results shed light on the possibility of the supersolid state in fermionic optical lattice systems.Comment: 5 pages, 4 figure

    Communication in cancer genetic counselling: does it reflect counselees' previsit needs and preferences?

    Get PDF
    This study sought to describe counsellorā€“counselee interaction during initial cancer genetic counselling consultations and to examine whether the communication reflects counselees' previsit needs. A total of 130 consecutive counselees, referred mainly for breast or colon cancer, completed a questionnaire before their first appointment at a genetic clinic. Their visit was videotaped. Counselee and counsellor verbal communications were analysed and initiative to discuss 11 genetics-specific conversational topics was assessed. The content of the visit appeared relatively standard. Overall, counselees had a stronger psychosocial focus than counsellors. Counsellors directed the communication more and initiated the discussion of most of the topics assessed. Counselees did not appear to communicate readily in a manner that reflected their previsit needs. Counsellors provided more psychosocial information to counselees in higher need for emotional support, yet did not enquire more about counselees' specific concerns. New counselees may be helped by receiving more information on the counselling procedure prior to their visit, and may be advised to prepare the visit more thoroughly so as to help them verbalise more their queries during the visit

    Bounding Mean First Passage Times in Population Continuous-Time Markov Chains

    Get PDF
    We consider the problem of bounding mean first passage times and reachability probabilities for the class of population continuous-time Markov chains, which capture stochastic interactions between groups of identical agents. The quantitative analysis of such models is notoriously difficult since typically neither state-based numerical approaches nor methods based on stochastic sampling give efficient and accurate results. Here, we propose a novel approach that leverages techniques from martingale theory and stochastic processes to generate constraints on the statistical moments of first passage time distributions. These constraints induce a semi-definite program that can be used to compute exact bounds on reachability probabilities and mean first passage times without numerically solving the transient probability distribution of the process or sampling from it. We showcase the method on some test examples and tailor it to models exhibiting multimodality, a class of particularly challenging scenarios from biology

    Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless ā€˜Frankā€“Starling Gainā€™ index

    Get PDF
    This paper briefly recapitulates the Frankā€“Starling law of the heart, reviews approaches to establishing diastolic and systolic forceā€“length behaviour in intact isolated cardiomyocytes, and introduces a dimensionless index called ā€˜Frankā€“Starling Gainā€™, calculated as the ratio of slopes of end-systolic and end-diastolic forceā€“length relations. The benefits and limitations of this index are illustrated on the example of regional differences in Guinea pig intact ventricular cardiomyocyte mechanics. Potential applicability of the Frankā€“Starling Gain for the comparison of cell contractility changes upon stretch will be discussed in the context of intra- and inter-individual variability of cardiomyocyte properties
    • ā€¦
    corecore