3 research outputs found

    A systematic review of optical coherence tomography findings in adults with mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) is common with many patients suffering disabling long-term sequelae, with visual symptoms frequently reported. There are no objective biomarkers of mTBI that are routinely used in clinical practice. Optical coherence tomography (OCT) has been used in mTBI research, as it enables visualisation of the neuroretina, allowing measurement of the retinal nerve fibre layer and ganglion cell layer. This systematic review aims to appraise the available literature and assess whether there are significant changes within the retinal nerve fibre layer and ganglion cell layer in subjects after mTBI. A systematic review was carried out in accordance with PRISMA guidelines and registered with PROSPERO (Number: CRD42022360498). Four databases were searched for relevant literature published from inception until 1 September 2022. Abstracts and full texts were screened by three independent reviewers. Initial screening of databases yielded 341 publications, of these, three fulfilled all the criteria for inclusion. All three studies showed thinning of the retinal nerve fibre layer, whereas there were no significant changes in the ganglion cell layer. This systematic review demonstrated that thinning of the retinal nerve fibre layer (but not of the ganglion cell layer) is associated with mTBI. It provides preliminary evidence for the use of the retinal nerve fibre layer as a potential biomarker of damage to the visual system in mTBI. Further prospective longitudinal studies ensuring uniform diagnosis and accurate phenotyping of mTBI are needed to understand the effects on the visual system and potential of OCT as a prognostic biomarker

    Homological scaffolds of brain functional networks

    Get PDF
    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality andmodularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneouslymake their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare restingstate functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results showthat the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo
    corecore