27 research outputs found

    A hypocaloric diet rich in high fiber rye foods causes greater reduction in body weight and body fat than a diet rich in refined wheat: A parallel randomized controlled trial in adults with overweight and obesity (the RyeWeight study)

    Get PDF
    Background and aim: A high intake of whole grain foods is inversely associated with body mass index (BMI) and body fat in observational studies, but mixed results have been found in interventional studies. Among whole grains, rye is the richest source of dietary fiber and meals containing high-fiber rye foods have shown increased satiety up to 8 h, compared to meals containing refined wheat products. The aim of the study was to determine the effect of consuming high fiber rye products, compared to refined wheat products, on body weight and body fat loss in the context of an energy restricted diet.Methods: After a 2-week run-in period, 242 males and females with overweight or obesity (BMI 27-35 kg/m(2)), aged 30-70 years, were randomized (1:1) to consume high fiber rye products or refined wheat products for 12 weeks, while adhering to a hypocaloric diet. At week 0, week 6 and week 12 body weight and body composition (dual energy x-ray absorptiometry) was measured and fasting blood samples were collected. Subjective appetite was evaluated for 14 h at week 0, 6 and 12.Results: After 12 weeks the participants in the rye group had lost 1.08 kg body weight and 0.54% body fat more than the wheat group (95% confidence interval (CI): 0.36; 1.80, p < 0.01 and 0.05; 1.03, p 1/4 0.03, respectively). C-reactive protein was 28% lower in the rye vs wheat group after 12 weeks of intervention (CI: 7; 53, p < 0.01). There were no consistent group differences on subjective appetite or on other cardiometabolic risk markers.Conclusion: Consumption of high fiber rye products as part of a hypocaloric diet for 12 weeks caused a greater weight loss and body fat loss, as well as reduction in C-reactive protein, compared to refined wheat. The difference in weight loss could not be linked to differences in appetite response. (C) 2021 The Author(s). Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism

    Integration of molecular profiles in a longitudinal wellness profiling cohort

    Get PDF
    An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine

    The effects of high frequency subthalamic stimulation on balance performance and fear of falling in patients with Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Balance impairment is one of the most distressing symptoms in Parkinson's disease (PD) even with pharmacological treatment (levodopa). A complementary treatment is high frequency stimulation in the subthalamic nucleus (STN). Whether STN stimulation improves postural control is under debate. The aim of this study was to explore the effects of STN stimulation alone on balance performance as assessed with clinical performance tests, subjective ratings of fear of falling and posturography.</p> <p>Methods</p> <p>Ten patients (median age 66, range 59–69 years) with bilateral STN stimulation for a minimum of one year, had their anti-PD medications withdrawn overnight. Assessments were done both with the STN stimulation turned OFF and ON (start randomized). In both test conditions, the following were assessed: motor symptoms (descriptive purposes), clinical performance tests, fear of falling ratings, and posturography with and without vibratory proprioceptive disturbance.</p> <p>Results</p> <p>STN stimulation alone significantly (p = 0.002) increased the scores of the Berg balance scale, and the median increase was 6 points. The results of all timed performance tests, except for sharpened Romberg, were significantly (p ≀ 0.016) improved. The patients rated their fear of falling as less severe, and the total score of the Falls-Efficacy Scale(S) increased (p = 0.002) in median with 54 points. All patients completed posturography when the STN stimulation was turned ON, but three patients were unable to do so when it was turned OFF. The seven patients with complete data showed no statistical significant difference (p values ≄ 0.109) in torque variance values when comparing the two test situations. This applied both during quiet stance and during the periods with vibratory stimulation, and it was irrespective of visual input and sway direction.</p> <p>Conclusion</p> <p>In this sample, STN stimulation alone significantly improved the results of the clinical performance tests that mimic activities in daily living. This improvement was further supported by the patients' ratings of fear of falling, which were less severe with the STN stimulation turned ON. Posturography could not be performed by three out of the ten patients when the stimulation was turned OFF. The posturography results of the seven patients with complete data showed no significant differences due to STN stimulation.</p

    Effects of FODMAPs and Gluten on Gut Microbiota and Their Association with the Metabolome in Irritable Bowel Syndrome: A Double-Blind, Randomized, Cross-Over Intervention Study

    Get PDF
    Background: A mechanistic understanding of the effects of dietary treatment in irritable bowel syndrome (IBS) is lacking. Our aim was therefore to investigate how fermentable oligo- di-, monosaccharides, and polyols (FODMAPs) and gluten affected gut microbiota and circulating metabolite profiles, as well as to investigate potential links between gut microbiota, metabolites, and IBS symptoms. Methods: We used data from a double-blind, randomized, crossover study with week-long provocations of FODMAPs, gluten, and placebo in participants with IBS. To study the effects of the provocations on fecal microbiota, fecal and plasma short-chain fatty acids, the untargeted plasma metabolome, and IBS symptoms, we used Random Forest, linear mixed model and Spearman correlation analysis. Results: FODMAPs increased fecal saccharolytic bacteria, plasma phenolic-derived metabolites, 3-indolepropionate, and decreased isobutyrate and bile acids. Gluten decreased fecal isovalerate and altered carnitine derivatives, CoA, and fatty acids in plasma. For FODMAPs, modest correlations were observed between microbiota and phenolic-derived metabolites and 3-indolepropionate, previously associated with improved metabolic health, and reduced inflammation. Correlations between molecular data and IBS symptoms were weak. Conclusions: FODMAPs, but not gluten, altered microbiota composition and correlated with phenolic-derived metabolites and 3-indolepropionate, with only weak associations with IBS symptoms. Thus, the minor effect of FODMAPs on IBS symptoms must be weighed against the effect on microbiota and metabolites related to positive health factors

    Inner ear damage from toy cap pistols and fire-crackers

    Full text link
    Groups of guinea pigs comprising 7 animals in each group were exposed to 10, 50 or 100 exposures to fire-crackers or 10, 50 or 100 exposures to toy cap pistol shots. An additional group of 7 animals comprised the control material. The exposures were performed with 15-s intervals at 0.25 m distance for the toy cap pistol shots and at 0.8 m for the fire-crackers. The peak sound level at the ear was 155 dBC for both impulsive sounds. After a 3-week survival period the animals were anesthetized and decapitated. The cochleas were examined histologically in surface preparations and read double-blind. One animal in each group exposed to 10 fire-crackers and 10 toy cap pistol shots showed sensory cell loss. With 50 or 100 toy cap pistol shots or fire-cracker exposures, 24 out of 28 animals showed pronounced sensory cell loss. The present results clearly indicate the risk for noise-induced hearing loss in children playing with toy cap guns and fire-crackers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29391/1/0000462.pd

    Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats

    No full text
    The effect of an intestinal microflora consisting of selected microbial species on myoelectric activity of small intestine was studied using germ-free rat models, with recording before and after specific intestinal colonization, in the unanesthetized state. Intestinal transit, neuropeptides in blood (RIA), and neuromessengers in the intestinal wall were determined. Clostridium tabificum vp 04 promoted regular spike burst activity, shown by a reduction of the migrating myoelectric complex (MMC) period from 30.5 +/- 3.9 min in the germ-free state to 21.2 +/- 0.14 min (P< 0.01). Lactobacillus acidophilus A10 and Bifidobacterium bifidum B11 reduced the MMC period from 27.9 +/- 4.5 to 21.5 +/- 2.1 min (P< 0.02) and accelerated small intestinal transit (P< 0.05). Micrococcus luteus showed an inhibitory effect, with an MMC period of 35.9 +/- 9.3 min compared with 27.7 +/- 6.3 min in germ-free rats (P< 0.01). Inhibition was indicated also for Escherichia coli X7 gnotobiotic rats. No consistent changes in slow wave frequency were observed. The concentration of neuropeptide Y in blood decreased after introduction of conventional intestinal microflora, suggesting reduced inhibitory control. Intestinal bacteria promote or suppress the initiation and aboral migration of the MMC depending on the species involved. Bacteria with primitive fermenting metabolism (anaerobes) emerge as important promoters of regular spike burst activity in small intestine
    corecore