93 research outputs found

    Sperm-mediated Effects of Predation Risk on Reproduction in Male Threespined Sticklebacks

    Get PDF
    Threespined sticklebacks, Gasterosteus aculeatus, exhibit male-only parental care, but will decrease paternal care if exposed to predators while given care or if their mate has had prior experiences with predators. The offspring will experience lasting effects based on the experience of their parents (behavior-mediated transgenerational plasticity). While other studies have concluded that male exposure to predators prior to fertilization (sperm-mediated transgenerational plasticity) impacts offspring, whether sperm-mediated effects exist in sticklebacks, and for how many generations the effects persist is unknown. Courtship trials with both predator exposed and predator unexposed females with six male treatment groups shows significant impact of maternal grandfather predation exposure, suggesting that daughters of predator-exposed fathers are passing down cues to their sons

    Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several recent studies have demonstrated the use of Roche 454 sequencing technology for <it>de novo </it>transcriptome analysis. Low error rates and high coverage also allow for effective SNP discovery and genetic diversity estimates. However, genetically diverse datasets, such as those sourced from natural populations, pose challenges for assembly programs and subsequent analysis. Further, estimating the effectiveness of transcript discovery using Roche 454 transcriptome data is still a difficult task.</p> <p>Results</p> <p>Using the Roche 454 FLX Titanium platform, we sequenced and assembled larval transcriptomes for two butterfly species: the Propertius duskywing, <it>Erynnis propertius </it>(Lepidoptera: Hesperiidae) and the Anise swallowtail, <it>Papilio zelicaon </it>(Lepidoptera: Papilionidae). The Expressed Sequence Tags (ESTs) generated represent a diverse sample drawn from multiple populations, developmental stages, and stress treatments.</p> <p>Despite this diversity, > 95% of the ESTs assembled into long (> 714 bp on average) and highly covered (> 9.6× on average) contigs. To estimate the effectiveness of transcript discovery, we compared the number of bases in the hit region of unigenes (contigs and singletons) to the length of the best match silkworm (<it>Bombyx mori</it>) protein--this "ortholog hit ratio" gives a close estimate on the amount of the transcript discovered relative to a model lepidopteran genome. For each species, we tested two assembly programs and two parameter sets; although CAP3 is commonly used for such data, the assemblies produced by Celera Assembler with modified parameters were chosen over those produced by CAP3 based on contig and singleton counts as well as ortholog hit ratio analysis. In the final assemblies, 1,413 <it>E. propertius </it>and 1,940 <it>P. zelicaon </it>unigenes had a ratio > 0.8; 2,866 <it>E. propertius </it>and 4,015 <it>P. zelicaon </it>unigenes had a ratio > 0.5.</p> <p>Conclusions</p> <p>Ultimately, these assemblies and SNP data will be used to generate microarrays for ecoinformatics examining climate change tolerance of different natural populations. These studies will benefit from high quality assemblies with few singletons (less than 26% of bases for each assembled transcriptome are present in unassembled singleton ESTs) and effective transcript discovery (over 6,500 of our putative orthologs cover at least 50% of the corresponding model silkworm gene).</p

    Metabolic remodeling of white adipose tissue in obesity

    Get PDF
    Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇o2, V̇co2, and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity

    An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques

    Get PDF
    Chronic unresolved inflammation plays a causal role in the development of advanced atherosclerosis, but the mechanisms that prevent resolution in atherosclerosis remain unclear. Here, we use targeted mass spectrometry to identify specialized pro-resolving lipid mediators (SPM) in histologically-defined stable and vulnerable regions of human carotid atherosclerotic plaques. The levels of SPMs, particularly resolvin D1 (RvD1), and the ratio of SPMs to pro-inflammatory leukotriene B4 (LTB₄), are significantly decreased in the vulnerable regions. SPMs are also decreased in advanced plaques of fat-fed Ldlr⁻/⁻ mice. Administration of RvD1 to these mice during plaque progression restores the RvD1:LTB₄ ratio to that of less advanced lesions and promotes plaque stability, including decreased lesional oxidative stress and necrosis, improved lesional efferocytosis, and thicker fibrous caps. These findings provide molecular support for the concept that defective inflammation resolution contributes to the formation of clinically dangerous plaques and offer a mechanistic rationale for SPM therapy to promote plaque stability

    Thermal Variability Increases the Impact of Autumnal Warming and Drives Metabolic Depression in an Overwintering Butterfly

    Get PDF
    Increases in thermal variability elevate metabolic rate due to Jensen's inequality, and increased metabolic rate decreases the fitness of dormant ectotherms by increasing consumption of stored energy reserves. Theory predicts that ectotherms should respond to increased thermal variability by lowering the thermal sensitivity of metabolism, which will reduce the impact of the warm portion of thermal variability. We examined the thermal sensitivity of metabolic rate of overwintering Erynnis propertius (Lepidoptera: Hesperiidae) larvae from a stable or variable environment reared in the laboratory in a reciprocal common garden design, and used these data to model energy use during the winters of 1973–2010 using meteorological data to predict the energetic outcomes of metabolic compensation and phenological shifts. Larvae that experienced variable temperatures had decreased thermal sensitivity of metabolic rate, and were larger than those reared at stable temperatures, which could partially compensate for the increased energetic demands. Even with depressed thermal sensitivity, the variable environment was more energy-demanding than the stable, with the majority of this demand occurring in autumn. Autumn phenology changes thus had disproportionate influence on energy consumption in variable environments, and variable-reared larvae were most susceptible to overwinter energy drain. Therefore the energetic impacts of the timing of entry into winter dormancy will strongly influence ectotherm fitness in northern temperate environments. We conclude that thermal variability drives the expression of metabolic suppression in this species; that phenological shifts will have a greater impact on ectotherms in variable thermal environments; and that E. propertius will be more sensitive to shifts in phenology in autumn than in spring. This suggests that increases in overwinter thermal variability and/or extended, warm autumns, will negatively impact all non-feeding dormant ectotherms which lack the ability to suppress their overwinter metabolic thermal sensitivity

    Estimation of Isolation Times of the Island Species in the Drosophila simulans Complex from Multilocus DNA Sequence Data

    Get PDF
    Background: The Drosophila simulans species complex continues to serve as an important model system for the study of new species formation. The complex is comprised of the cosmopolitan species, D. simulans, and two island endemics, D. mauritiana and D. sechellia. A substantial amount of effort has gone into reconstructing the natural history of the complex, in part to infer the context in which functional divergence among the species has arisen. In this regard, a key parameter to be estimated is the initial isolation time (t) of each island species. Loci in regions of low recombination have lower divergence within the complex than do other loci, yet divergence from D. melanogaster is similar for both classes. This might reflect gene flow of the lowrecombination loci subsequent to initial isolation, but it might also reflect differential effects of changing population size on the two recombination classes of loci when the low-recombination loci are subject to genetic hitchhiking or pseudohitchhiking Methodology/Principal Findings: New DNA sequence variation data for 17 loci corroborate the prior observation from 13 loci that DNA sequence divergence is reduced in genes of low recombination. Two models are presented to estimate t and other relevant parameters (substitution rate correction factors in lineages leading to the island species and, in the case of the 4-parameter model, the ratio of ancestral to extant effective population size) from the multilocus DNA sequence data. Conclusions/Significance: In general, it appears that both island species were isolated at about the same time, here estimated at,250,000 years ago. It also appears that the difference in divergence patterns of genes in regions of low an

    Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

    Get PDF
    Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore