20 research outputs found

    Novel Antibody Drug Conjugates Targeting Tumor-Associated Receptor Tyrosine Kinase ROR2 by Functional Screening of Fully Human Antibody Libraries Using Transpo-mAb Display on Progenitor B Cells

    Get PDF
    Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has been identified as a highly relevant tumor-associated antigen in a variety of cancer indications of high unmet medical need, including renal cell carcinoma and osteosarcoma, making it an attractive target for targeted cancer therapy. Here, we describe the de novo discovery of fully human ROR2-specific antibodies and potent antibody drug conjugates (ADCs) derived thereof by combining antibody discovery from immune libraries of human immunoglobulin transgenic animals using the Transpo-mAb mammalian cell-based IgG display platform with functional screening for internalizing antibodies using a secondary ADC assay. The discovery strategy entailed immunization of transgenic mice with the cancer antigen ROR2, harboring transgenic IgH and IgL chain gene loci with limited number of fully human V, D, and J gene segments. This was followed by recovering antibody repertoires from the immunized animals, expressing and screening them as full-length human IgG libraries by transposon-mediated display in progenitor B lymphocytes (“Transpo-mAb Display”) for ROR2 binding. Individual cellular “Transpo-mAb” clones isolated by single cell sorting and capable of expressing membrane-bound as well as secreted human IgG were directly screened during antibody discovery, not only for high affinity binding to human ROR2, but also functionally as ADCs using a cytotoxicity assay with a secondary anti-human IgG-toxin-conjugate. Using this strategy, we identified and validated 12 fully human, monoclonal anti-human ROR2 antibodies with nanomolar affinities that are highly potent as ADCs and could be promising candidates for the therapy of human cancer. The screening for functional and internalizing antibodies during the early phase of antibody discovery demonstrates the utility of the mammalian cell-based Transpo-mAb Display platform to select for functional binders and as a powerful tool to improve the efficiency for the development of therapeutically relevant ADCs

    A Signature in HIV-1 Envelope Leader Peptide Associated with Transition from Acute to Chronic Infection Impacts Envelope Processing and Infectivity

    Get PDF
    Mucosal transmission of the human immunodeficiency virus (HIV) results in a bottleneck in viral genetic diversity. Gnanakaran and colleagues used a computational strategy to identify signature amino acids at particular positions in Envelope that were associated either with transmitted sequences sampled very early in infection, or sequences sampled during chronic infection. Among the strongest signatures observed was an enrichment for the stable presence of histidine at position 12 at transmission and in early infection, and a recurrent loss of histidine at position 12 in chronic infection. This amino acid lies within the leader peptide of Envelope, a region of the protein that has been shown to influence envelope glycoprotein expression and virion infectivity. We show a strong association between a positively charged amino acid like histidine at position 12 in transmitted/founder viruses with more efficient trafficking of the nascent envelope polypeptide to the endoplasmic reticulum and higher steady-state glycoprotein expression compared to viruses that have a non-basic position 12 residue, a substitution that was enriched among viruses sampled from chronically infected individuals. When expressed in the context of other viral proteins, transmitted envelopes with a basic amino acid position 12 were incorporated at higher density into the virus and exhibited higher infectious titers than did non-signature envelopes. These results support the potential utility of using a computational approach to examine large viral sequence data sets for functional signatures and indicate the importance of Envelope expression levels for efficient HIV transmission

    Society for Immunotherapy of Cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors with chemotherapy

    Get PDF
    Although immunotherapy can offer profound clinical benefit for patients with a variety of difficult-to-treat cancers, many tumors either do not respond to upfront treatment with immune checkpoint inhibitors (ICIs) or progressive/recurrent disease occurs after an interval of initial control. Improved response rates have been demonstrated with the addition of ICIs to cytotoxic therapies, leading to approvals from the US Food and Drug Administration and regulatory agencies in other countries for ICI-chemotherapy combinations in a number of solid tumor indications, including breast, head and neck, gastric, and lung cancer. Designing trials for patients with tumors that do not respond or stop responding to treatment with immunotherapy combinations, however, is challenging without uniform definitions of resistance. Previously, the Society for Immunotherapy of Cancer (SITC) published consensus definitions for resistance to single-agent anti-programmed cell death protein 1 (PD-1). To provide guidance for clinical trial design and to support analyses of emerging molecular and cellular data surrounding mechanisms of resistance to ICI-based combinations, SITC convened a follow-up workshop in 2021 to develop consensus definitions for resistance to multiagent ICI combinations. This manuscript reports the consensus clinical definitions for combinations of ICIs and chemotherapies. Definitions for resistance to ICIs in combination with targeted therapies and with other ICIs will be published in companion volumes to this paper

    Association of Activating KIR Copy Number Variation of NK Cells with Containment of SIV Replication in Rhesus Monkeys

    Get PDF
    While the contribution of CD8+ cytotoxic T lymphocytes to early containment of HIV-1 spread is well established, a role for NK cells in controlling HIV-1 replication during primary infection has been uncertain. The highly polymorphic family of KIR molecules expressed on NK cells can inhibit or activate these effector cells and might therefore modulate their activity against HIV-1-infected cells. In the present study, we investigated copy number variation in KIR3DH loci encoding the only activating KIR receptor family in rhesus monkeys and its effect on simian immunodeficiency virus (SIV) replication during primary infection in rhesus monkeys. We observed an association between copy numbers of KIR3DH genes and control of SIV replication in Mamu-A*01– rhesus monkeys that express restrictive TRIM5 alleles. These findings provide further evidence for an association between NK cells and the early containment of SIV replication, and underscore the potential importance of activating KIRs in stimulating NK cell responses to control SIV spread

    Three different product types from reactions of lithiated cyclic aminals with trivalent organometal chlorides

    No full text
    Hellmann B, Kamps I, Mix A, Neumann B, Stammler H-G, Mitzel NW. Three different product types from reactions of lithiated cyclic aminals with trivalent organometal chlorides. CHEMICAL COMMUNICATIONS. 2010;46(35):6536-6538.The reaction of 2-lithio-1,3,5-trimethyl-1,3,5-triazacyclohexane with YCp2Cl leads to the formation of a donor-functionalised mono-anionic amide ligand, 1,3,5-trimethyl-2-(methylamidomethyl)- 1,3,5-triazacyclohexane, bonded to the YCp2 unit. The reaction involves a cleavage of the 1,3,5-triazacyclohexane ring and such a cleavage is also observed in the analogous reaction with (Me3C)(2)GaCl, where a MeN=CH- fragment is formed. No such cleavage occurs in the reaction of the related dilithiated bicyclic bis(3-methyl-1,3-diazacyclohex-1-yl)methane with YCpCl2 center dot 3thf, which affords a mixed lithium-yttrium organyl
    corecore