53 research outputs found

    Tidal Constraints on Planetary Habitability

    Full text link
    We review how tides may impact the habitability of terrestrial-like planets. If such planets form around low-mass stars, then planets in the circumstellar habitable zone will be close enough to their host stars to experience strong tidal forces. We discuss 1) decay of semi-major axis, 2) circularization of eccentric orbits, 3) evolution toward zero obliquity, 4) fixed rotation rates (not necessarily synchronous), and 5) internal heating. We briefly describe these effects using the example of a 0.25 solar mass star with a 10 Earth-mass companion. We suggest that the concept of a habitable zone should be modified to include the effects of tides.Comment: 6 pages, 3 figures. Proceedings submitted to "Pathways Towards Habitable Planets" Symposium (eds.: D. Gelino, V. Coude du Foresto, I. Ribas

    RoSETZ: Roman Survey of the Earth Transit Zone -- a SETI-optimized survey for habitable-zone exoplanets

    Full text link
    In this White Paper for Nancy Grace Roman Space Telescope (Roman) science, we propose the Roman Survey of the Earth Transit Zone (RoSETZ), a transit search for rocky planets within the habitable zones (HZs) of stars located within the Earth Transit Zone (ETZ). The ETZ holds special interest in the search for extra-terrestrial intelligence (SETI) - observers on planets within the ETZ can see Earth as a transiting planet. RoSETZ would augment the Roman Galactic Bulge Time Domain Survey (GBTDS) as an additional field located ∼5\sim 5~degrees away from other GBTDS fields. Our simulations show that RoSETZ alone can find from 120 to 630 Earth-sized HZ planets around K- and M-type hosts, with the range reflecting different survey design assumptions. These yields are 5-20 times the number currently known. Such a sample will transform our knowledge of ``Eta-Earth'' (η⊕\eta_{\oplus}) -- the occurrence of Earth-sized HZ planets -- and would be the first catalogue of exoplanets selected in a manner optimized according to the Mutual Detectability targetted-SETI strategy. If it can be accommodated alongside the existing GBTDS design, we favour a RoSETZ-Max design that is observed for the duration of the GBTDS. If not, we show that a slimmed-down RoSETZ-Lite design, occupying two GBTDS seasons, would not significantly impact overall GBTDS exoplanet yields, even if time allocated to it had to come from time allocations to other fields. We argue that the angular separation of RoSETZ from other GBTDS fields permits self-calibration of systematic uncertainties that would otherwise hamper exoplanet demographic modelling of both microlensing and transit datasets. Other science possible with RoSETZ data include studies of small solar system bodies and high resolution 3D extinction mapping.Comment: 20 pages. Submission to the NASA Roman Core Community Surveys White Paper Cal

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Transition, Integration and Convergence. The Case of Romania

    Full text link

    Electrical and Optical Properties of Amorphous SnO2:Ta Films, Prepared by DC and RF Magnetron Sputtering: A Systematic Study of the Influence of the Type of the Reactive Gas

    No full text
    By reactive magnetron sputtering from a ceramic SnO2:Ta target onto unheated substrates, X-ray amorphous SnO:Ta films were prepared in gas mixtures of Ar/O2(N2O, H2O). The process windows, where the films exhibit the lowest resistivity values, were investigated as a function of the partial pressure of the reactive gases O2, N2O and H2O. We found that all three gases lead to the same minimum resistivity, while the width of the process window is broadest for the reactive gas H2O. While the amorphous films were remarkably conductive (ρ ≈ 5 × 10−3 Ωcm), the films crystallized by annealing at 500 °C exhibit higher resistivities due to grain boundary limited conduction. For larger film thicknesses (d ≳ 150 nm), crystallization occurs already during the deposition, caused by the substrate temperature increase due to the energy influx from the condensing film species and from the plasma (ions, electrons), leading to higher resistivities of these films. The best amorphous SnO2:Ta films had a resistivity of lower than 4 × 10−3 Ωcm, with a carrier concentration of 1.1 × 1020 cm−3, and a Hall mobility of 16 cm2/Vs. The sheet resistance was about 400 Ω/â–¡ for 100 nm films and 80 Ω/â–¡ for 500 nm thick films. The average optical transmittance from 500 to 1000 nm is greater than 76% for 100 nm films, where the films, deposited with H2O as reactive gas, exhibit even a slightly higher transmittance of 80%. These X-ray amorpous SnO2:Ta films can be used as low-temperature prepared transparent and conductive protection layers, for instance, to protect semiconducting photoelectrodes for water splitting, and also, where appropriate, in combination with more conductive TCO films (ITO or ZnO)

    Interaction of hydrogen with hafnium dioxide grown on silicon dioxide by the atomic layer deposition technique

    No full text
    The electrical and structural properties of thin hafnia films grown by the atomic layer deposition technique were investigated before and after different annealing steps as well as after a dc H plasma treatment. By using the nuclear reaction analysis, the authors demonstrated that high concentrations of hydrogen (about 1–2 at. %) could be observed even in as-grown hafnia layers. An additional hydrogenation of the samples with atomic H led to a significant shift of the flatband voltage. This shift could be explained by the introduction of positively charged H-related defects which were found to be stable at room temperature. By comparing the experimental findings with the theory and the data from muon spin spectroscopy, they tentatively ascribed these defects to interstitial H in HfO2
    • …
    corecore