391 research outputs found
Uniform semiclassical wave function for coherent 2D electron flow
We find a uniform semiclassical (SC) wave function describing coherent
branched flow through a two-dimensional electron gas (2DEG), a phenomenon
recently discovered by direct imaging of the current using scanned probed
microscopy. The formation of branches has been explained by classical
arguments, but the SC simulations necessary to account for the coherence are
made difficult by the proliferation of catastrophes in the phase space. In this
paper, expansion in terms of "replacement manifolds" is used to find a uniform
SC wave function for a cusp singularity. The method is then generalized and
applied to calculate uniform wave functions for a quantum-map model of coherent
flow through a 2DEG. Finally, the quantum-map approximation is dropped and the
method is shown to work for a continuous-time model as well.Comment: 9 pages, 7 figure
Theory of a Scanning Tunneling Microscope with a Two-Protrusion Tip
We consider a scanning tunneling microscope (STM) such that tunneling occurs
through two atomically sharp protrusions on its tip. When the two protrusions
are separated by at least several atomic spacings, the differential conductance
of this STM depends on the electronic transport in the sample between the
protrusions. Furthermore two-protrusion tips commonly occur during STM tip
preparation. We explore possible applications to probing dynamical impurity
potentials on a metallic surface and local transport in an anisotropic
superconductor.Comment: revtex, 11 pages, 6 figures upon reques
Microscopic theory for quantum mirages in quantum corrals
Scanning tunneling microscopy permits to image the Kondo resonance of a
single magnetic atom adsorbed on a metallic surface. When the magnetic impurity
is placed at the focus of an elliptical quantum corral, a Kondo resonance has
been recently observed both on top of the impurity and on top of the focus
where no magnetic impurity is present. This projection of the Kondo resonance
to a remote point on the surface is referred to as quantum mirage. We present a
quantum mechanical theory for the quantum mirage inside an ideal quantum corral
and predict that the mirage will occur in corrals with shapes other than
elliptical
Classical trajectories in quantum transport at the band center of bipartite lattices with or without vacancies
Here we report on several anomalies in quantum transport at the band center
of a bipartite lattice with vacancies that are surely due to its chiral
symmetry, namely: no weak localization effect shows up, and, when leads have a
single channel the transmission is either one or zero. We propose that these
are a consequence of both the chiral symmetry and the large number of states at
the band center. The probability amplitude associated to the eigenstate that
gives unit transmission ressembles a classical trajectory both with or without
vacancies. The large number of states allows to build up trajectories that
elude the blocking vacancies explaining the absence of weak localization.Comment: 5 pages, 5 figure
Interaction between Kondo impurities in a quantum corral
We calculate the spectral densities for two impurities inside an elliptical
quantum corral using exact diagonalization in the relevant Hilbert subspace and
embedding into the rest of the system. For one impurity, the space and energy
dependence of the change in differential conductance observed
in the quantum mirage experiment is reproduced. In presence of another
impurity, is very sensitive to the hybridization between
impurity and bulk. The impurities are correlated ferromagnetically between
them. A hopping eV between impurities destroy the Kondo
resonance.Comment: 4 pages, 4 figure
Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip
Using the recursive Green's function technique, we study the coherent
electron conductance of a quantum point contact in the presence of a scanning
probe microscope tip. Images of the coherent fringe inside a quantum point
contact for different widths are obtained. It is found that the conductance of
a specific channel is reduced while other channels are not affected as long as
the tip is located at the positions correspending to that channel. Moreover,
the coherent fringe is smoothed out by increasing the temperature or the
voltage across the device. Our results are consistent with the experiments
reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page
One- and many-body effects on mirages in quantum corrals
Recent interesting experiments used scanning tunneling microscopy to study
systems involving Kondo impurities in quantum corrals assembled on Cu or noble
metal surfaces. The solution of the two-dimensional one-particle Schrodinger
equation in a hard wall corral without impurity is useful to predict the
conditions under which the Kondo effect can be projected to a remote location
(the quantum mirage). To model a soft circular corral, we solve this equation
under the potential W*delta(r-r0), where r is the distance to the center of the
corral and r0 its radius. We expand the Green's function of electron surface
states Gs0 for r<r0 as a discrete sum of contributions from single poles at
energies epsilon_i-I*delta_i. The imaginary part delta_i is the half-width of
the resonance produced by the soft confining potential, and turns out to be a
simple increasing function of epsilon_i. In presence of an impurity, we solve
the Anderson model at arbitrary temperatures using the resulting expression for
Gs0 and perturbation theory up to second order in the Coulomb repulsion U. We
calculate the resulting change in the differential conductance Delta dI/dV as a
function of voltage and space, in circular and elliptical corrals, for
different conditions, including those corresponding to recent experiments. The
main features are reproduced. The role of the direct hybridization between
impurity and bulk, the confinement potential, the size of the corral and
temperature on the intensity of the mirage are analyzed. We also calculate
spin-spin correlation functions.Comment: 13 pages, 12 figures, accepted for publication in Phys. Rev. B.
Calculations of spin correlations within an additional approximation adde
Lattice calculation of hybrid mesons with improved Kogut-Susskind fermions
We report on a lattice determination of the mass of the exotic
hybrid meson using an improved Kogut-Susskind action. Results from both
quenched and dynamical quark simulations are presented. We also compare with
earlier results using Wilson quarks at heavier quark masses. The results on
lattices with three flavors of dynamical quarks show effects of sea quarks on
the hybrid propagators which probably result from coupling to two meson states.
We extrapolate the quenched results to the physical light quark mass to allow
comparison with experimental candidates for the hybrid meson. The
lattice result remains somewhat heavier than the experimental result, although
it may be consistent with the .Comment: 24 pages, 12 figures. Replaced to match published versio
- …