7,384 research outputs found

    Lattice quark propagator with staggered quarks in Landau and Laplacian gauges

    Get PDF
    We report on the lattice quark propagator using standard and improved Staggered quark actions, with the standard, Wilson gauge action. The standard Kogut-Susskind action has errors of \oa{2} while the ``Asqtad'' action has \oa{4}, \oag{2}{2} errors. The quark propagator is interesting for studying the phenomenon of dynamical chiral symmetry breaking and as a test-bed for improvement. Gauge dependent quantities from lattice simulations may be affected by Gribov copies. We explore this by studying the quark propagator in both Landau and Laplacian gauges. Landau and Laplacian gauges are found to produce very similar results for the quark propagator.Comment: 11 pages, 15 figure

    On the neutrality issue in the Polyakov-loop NJL model

    Full text link
    We elucidate how the color neutrality is harmed in the Polyakov Nambu-Jona Lasinio (PNJL) model at finite density within the adopted mean field approximation. Also we point out how usual assumption about the diagonal form of the Wilson loop may fail in the presence of the diquark condensate on several grounds.Comment: 8 pages, 1 figure. Introduction enlarged, several comments about the adopted mean field approximation and the relation with Elitzur's theorem added. Version to appear on Phys. Rev.

    Modelling the quark propagator

    Get PDF
    The quark propagator is at the core of lattice hadron spectrum calculations as well as studies in other nonperturbative schemes. We investigate the quark propagator with an improved staggered action (Asqtad) and an improved gluon action, which provides good quality data down to small quark masses. This is used to construct ans\"{a}tze suitable for model hadron calculations as well as adding to our intuitive understanding of QCD.Comment: Lattice2002(spectrum

    Classical bifurcations and entanglement in smooth Hamiltonian system

    Get PDF
    We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a class of quantum eigenstates, called the channel localized states. For these states, the entanglement is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near a anti-pitchfork bifurcation. We place these results in the context of the close connections that may exist between entanglement measures and conventional measures of localization that have been much studied in quantum chaos and elsewhere. We also point to an interesting near-degeneracy that arises in the spectrum of reduced density matrices of certain states as an interplay of localization and symmetry.Comment: 7 pages, 6 figure

    Magnetic component of Yang-Mills plasma

    Full text link
    Confinement in non-Abelian gauge theories is commonly ascribed to percolation of magnetic monopoles, or strings in the vacuum. At the deconfinement phase transition the condensed magnetic degrees of freedom are released into gluon plasma as thermal magnetic monopoles. We point out that within the percolation picture lattice simulations can be used to estimate the monopole content of the gluon plasma. We show that right above the critical temperature the monopole density remains a constant function of temperature, as for a liquid, and then grows, like for a gas.Comment: 4 pages, no figures; replaced to match published versio

    Chiral crossover, deconfinement and quarkyonic matter within a Nambu-Jona Lasinio model with the Polyakov loop

    Full text link
    We study the interplay between the chiral and the deconfinement transitions, both at high temperature and high quark chemical potential, by a non local Nambu-Jona Lasinio model with the Polyakov loop in the mean field approximation and requiring neutrality of the ground state. We consider three forms of the effective potential of the Polyakov loop: two of them with a fixed deconfinement scale, cases I and II, and the third one with a ÎĽ\mu dependent scale, case III. In the cases I and II, at high chemical potential ÎĽ\mu and low temperature TT the main contribution to the free energy is due to the Z(3)-neutral three-quark states, mimicking the quarkyonic phase of the large NcN_c phase diagram. On the other hand in the case III the quarkyonic window is shrunk to a small region. Finally we comment on the relations of these results to lattice studies and on possible common prospects. We also briefly comment on the coexistence of quarkyonic and color superconductive phases.Comment: 16 pages, 7 figures, RevTeX4. Some typos corrected, references adde

    Unquenched quark propagator in Landau gauge

    Get PDF
    We present an unquenched calculation of the quark propagator in Landau gauge with 2+1 flavors of dynamical quarks. We use configurations generated with an improved staggered (``Asqtad'') action by the MILC collaboration. This quark action has been seen to have excellent rotational symmetry and scaling properties in the quenched quark propagator. Quenched and dynamical calculations are performed on a 203Ă—6420^3\times 64 lattice with a nominal lattice spacing of a=0.125a = 0.125 fm. The matched quenched and dynamical lattices allow us to investigate the relatively subtle sea quark effects, and even in the quenched case the physical volume of these lattices gives access to lower momenta than our previous study. We calculate the quark mass function and renormalization function for a variety of valence and sea quark masses.Comment: 7 pages, 6 figure

    Quark propagator from an improved staggered action in Laplacian and Landau gauges

    Get PDF
    Studies of gauge dependent quantities are afflicted with Gribov copies, but Laplacian gauge fixing provides one possible solution to this problem. We present results for the lattice quark propagator in both Landau and Laplacian gauges using standard and improved staggered quark actions. The standard Kogut-Susskind action has errors of \oa{2} while the improved ``Asqtad'' action has \oa{4}, \oag{2}{2} errors and this improvement is seen in the quark propagator. We demonstrate the application of tree-level corrections to these actions and see that Landau and Laplacian gauges produce very similar results. In addition, we test an ansatz for the quark mass function, with promising results. In the chiral limit, the infrared quark mass, M(q2=0)M(q^2 = 0) is found to be 260±20260\pm 20 MeV.Comment: 5 pages, 8 figs., Talk given at LHP workshop, Cairn

    Scars of Invariant Manifolds in Interacting Chaotic Few-Body Systems

    Full text link
    We present a novel extension of the concept of scars for the wave functions of classically chaotic few-body systems of identical particles with rotation and permutation symmetry. Generically there exist manifolds in classical phase space which are invariant under the action of a common subgroup of these two symmetries. Such manifolds are associated with highly symmetric configurations. If sufficiently stable, the quantum motion on such manifolds displays a notable enhancement of the revival in the autocorrelation function which is not directly associated with individual periodic orbits. Rather, it indicates some degree of localization around an invariant manifold which has collective characteristics that should be experimentally observable.Comment: 4 pages, RevTeX, 4 PS/EPS-figures, uses psfig.sty, quantum computation changed, to be published in Physical Review Letter
    • …
    corecore