2,611 research outputs found
Sub-nanometer free electrons with topological charge
The holographic mask technique is used to create freely moving electrons with
quantized angular momentum. With electron optical elements they can be focused
to vortices with diameters below the nanometer range. The understanding of
these vortex beams is important for many applications. Here we present a theory
of focused free electron vortices. The agreement with experimental data is
excellent. As an immediate application, fundamental experimental parameters
like spherical aberration and partial coherence are determined.Comment: 4 pages, 5 figure
On the homomorphism order of labeled posets
Partially ordered sets labeled with k labels (k-posets) and their
homomorphisms are examined. We give a representation of directed graphs by
k-posets; this provides a new proof of the universality of the homomorphism
order of k-posets. This universal order is a distributive lattice. We
investigate some other properties, namely the infinite distributivity, the
computation of infinite suprema and infima, and the complexity of certain
decision problems involving the homomorphism order of k-posets. Sublattices are
also examined.Comment: 14 page
Lower Bounds for the Graph Homomorphism Problem
The graph homomorphism problem (HOM) asks whether the vertices of a given
-vertex graph can be mapped to the vertices of a given -vertex graph
such that each edge of is mapped to an edge of . The problem
generalizes the graph coloring problem and at the same time can be viewed as a
special case of the -CSP problem. In this paper, we prove several lower
bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main
result is a lower bound .
This rules out the existence of a single-exponential algorithm and shows that
the trivial upper bound is almost asymptotically
tight.
We also investigate what properties of graphs and make it difficult
to solve HOM. An easy observation is that an upper
bound can be improved to where
is the minimum size of a vertex cover of . The second
lower bound shows that the upper bound is
asymptotically tight. As to the properties of the "right-hand side" graph ,
it is known that HOM can be solved in time and
where is the maximum degree of
and is the treewidth of . This gives
single-exponential algorithms for graphs of bounded maximum degree or bounded
treewidth. Since the chromatic number does not exceed
and , it is natural to ask whether similar
upper bounds with respect to can be obtained. We provide a negative
answer to this question by establishing a lower bound for any
function . We also observe that similar lower bounds can be obtained for
locally injective homomorphisms.Comment: 19 page
Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler
The focusing properties of three aspheric lenses with numerical aperture (NA)
between 0.53 and 0.68 were directly measured using an interferometrically
referenced scanning knife-edge beam profiler with sub-micron resolution. The
results obtained for two of the three lenses tested were in agreement with
paraxial gaussian beam theory. It was also found that the highest NA aspheric
lens which was designed for 830nm was not diffraction limited at 633nm. This
process was automated using motorized translation stages and provides a direct
method for testing the design specifications of high numerical aperture optics.Comment: 6 pages 4 figure
Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation
Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects
On the reduction of the CSP dichotomy conjecture to digraphs
It is well known that the constraint satisfaction problem over general
relational structures can be reduced in polynomial time to digraphs. We present
a simple variant of such a reduction and use it to show that the algebraic
dichotomy conjecture is equivalent to its restriction to digraphs and that the
polynomial reduction can be made in logspace. We also show that our reduction
preserves the bounded width property, i.e., solvability by local consistency
methods. We discuss further algorithmic properties that are preserved and
related open problems.Comment: 34 pages. Article is to appear in CP2013. This version includes two
appendices with proofs of claims omitted from the main articl
- …