607 research outputs found

    The influence of late-stage pupal irradiation and increased irradiated:un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton

    Get PDF
    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments with a higher ratio of irradiated versus un-irradiated males were performed. Second, pupae were irradiated just prior to emergence and male mating competitiveness was determined. Males were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. Pupae were irradiated aged 20-26 h (young) as routinely performed, or the pupal stage was artificially prolonged by cooling and pupae were irradiated aged 42-48 h (old). Irradiated males competed at a ratio of 3:1: 1 to un-irradiated males for mates in a large cage design. At the 3: 1 ratio, the number of females inseminated by males irradiated with 70 Gy as young pupae was similar to the number inseminated by un-irradiated males for the majority of the replicates. At 120 Gy, significantly fewer females were inseminated by irradiated than by un-irradiated males. The irradiation of older pupae did not result in a significantly improved male mating competitiveness compared to the irradiation of young pupae. Our findings indicate that the loss of competitiveness after pupal stage irradiation can be compensated for by a threefold increase of irradiated males, but only for the partially-sterilizing dose. In addition, cooling might be a useful tool to facilitate handling processes of large numbers of mosquitoes in genetic control programme

    Balance in a Middle School Reading Program

    Get PDF

    A Physical Unclonable Function derived from the power distribution system of an integrated circuit

    Get PDF
    Hardware support for security mechanisms such as authentication, cryptographic protocols, digital rights management and hardware metering depend heavily on the security of embedded secret keys. The current practice of embedding these keys as digital data in the Integrated Circuit (IC) weakens security because the keys can be learned through attacks. Physical Unclonable Functions (PUFs) are a recently- proposed alternative to storing digital keys on the IC. A PUF leverages the inherent manufacturing variations of an IC to define a random function. However, poor performance under PUF quality criteria such as the level of randomness and reproducibility in the responses have detracted from their adoption and widespread use. In this dissertation, I propose several ways to define a novel PUF using the Power Distribution System (PDS) of an IC. First, I describe the hardware primitive and test setup that is required to obtain the PUF responses. Then, I evaluate the analog PUF responses from silicon against standard PUF quality metrics in order to qualify the strengths and weaknesses of the proposed PUF. I show that the analog PUFs ex- hibit very high levels of randomness and reproducibility, but are sensitive to changes in temperature. Next, I propose extensions to our PUF that enable an exponential number of Challenge/Response Pairs (CRPs) with respect to the number of hardware resources, as well as yielding a marginal increase in the level of randomness. I also use these same analog measurements from silicon to simulate an integrated implementation of the PUF that takes a digital challenge and returns a digital response. I show that the integrated architecture also exhibits high levels of randomness and reproducibility, and is also resistant to changes in temperature. Future work includes designing and building a new IC that implements a more powerful hardware primitive that will improve both the number and accuracy of the measurements, as well as additional hardware that will allow the challenge and response generation to be performed on-chip

    Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis

    Get PDF
    BACKGROUND: In the context of the Sterile Insect Technique (SIT), radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae) was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. METHODS: Pupae were irradiated shortly before emergence (at 22–26 hrs of age), and adults <24 hrs post emergence. Doses tested ranged between 0 and 100 Gy. The effects of irradiation on adult emergence, male survival, induced sterility and insemination capability were evaluated. Emergence and insemination data were analysed using independent t-tests against the control. Correlation analyses were performed for insemination rate and dose and insemination and fecundity. Male survival was analysed using Kaplan-Meier survival analyses. Finally, the calculated residual fertility values were inverse-normal transformed and linear regression analyses performed. RESULTS: Irradiation of pupae, for all doses tested, had no effect on adult emergence. Survival curves of males irradiated as pupae or adults were similar or even slightly higher than non-irradiated males. Overall, adults appeared to be slightly more susceptible to irradiation, although no significant differences for individual doses were observed. In the pupal stage, a significant negative correlation was found between insemination and dose, but the correlation-coefficient was associated with less than 25% of the total variation. A review of the literature indicated that An. arabiensis is more radiation resistant than other anopheline mosquitoes. CONCLUSION: The optimal dose for male insects to be released in an SIT programme depends on their level of sterility and competitiveness. The use of semi-sterilizing doses to produce more competitive insects is discussed. The most convenient developmental stage for mosquito irradiation on a mass-scale are pupae, but pupal irradiation resulted in a lower insemination rate at the highest dose compared to adult irradiation. On the basis of this study, a suitable dose range that includes semi-sterilizing doses is identified to initiate competitiveness experiments for males irradiated at both developmental stages

    A stable isotope dual-labelling approach to detect multiple insemination in un-irradiated and irradiated Anopheles arabiensis mosquitoes

    Get PDF
    Male mating competitiveness is a crucial parameter in many genetic control programs including the sterile insect technique (SIT). We evaluated competitiveness of male Anopheles arabiensis Patton as a function of three experimental variables: (1) small or large cages for mating, (2) the effects of either a partially sterilizing (70 Gy) or fully sterilizing (120 Gy) dose, and (3) pupal or adult irradiation. Irradiated males competed for females with an equal number of unirradiated males. Competitiveness was determined by measuring hatch rates of individually laid egg batches. In small cages, pupal irradiation with the high dose resulted in the lowest competitiveness, whereas adult irradiation with the low dose gave the highest, with the latter males being equal in competitiveness to unirradiated males. In the large cage, reduced competitiveness of males irradiated in the pupal stage was more pronounced compared with the small cage; the males irradiated as adults at both doses performed similarly to unirradiated males. Unexpectedly, males irradiated with the high dose performed better in a large cage than in a small one. A high proportion of intermediate hatch rates was observed for eggs collected in the large cage experiments with males irradiated at the pupal stage. It is concluded that irradiation of adult An. arabiensis with the partially sterilizing dose results in the highest competitiveness for both cage designs. Cage size affected competitiveness for some treatments; therefore, competitiveness determined in laboratory experiments must be confirmed by releases into simulated field conditions. The protocols described are readily transferable to evaluate male competitiveness for other genetic control techniques

    Radiation biology of mosquitoes

    Get PDF
    There is currently renewed interest in assessing the feasibility of the sterile insect technique (SIT) to control African malaria vectors in designated areas. The SIT relies on the sterilization of males before mass release, with sterilization currently being achieved through the use of ionizing radiation. This paper reviews previous work on radiation sterilization of Anopheles mosquitoes. In general, the pupal stage was irradiated due to ease of handling compared to the adult stage. The dose-response curve between the induced sterility and log (dose) was shown to be sigmoid, and there was a marked species difference in radiation sensitivity. Mating competitiveness studies have generally been performed under laboratory conditions. The competitiveness of males irradiated at high doses was relatively poor, but with increasing ratios of sterile males, egg hatch could be lowered effectively. Males irradiated as pupae had a lower competitiveness compared to males irradiated as adults, but the use of partially-sterilizing doses has not been studied extensively. Methods to reduce somatic damage during the irradiation process as well as the use of other agents or techniques to induce sterility are discussed. It is concluded that the optimal radiation dose chosen for insects that are to be released during an SIT programme should ensure a balance between induced sterility of males and their field competitiveness, with competitiveness being determined under (semi-) field conditions. Self-contained 60Co research irradiators remain the most practical irradiators but these are likely to be replaced in the future by a new generation of high output X ray irradiators

    Redefining identity in the altered rural landscape

    Get PDF
    Thesis (M. Arch.)--Massachusetts Institute of Technology, Dept. of Architecture, 2006.Includes bibliographical references (p. 101-102).Within a place, there is a fluidity of demographic, a collision and interaction between identities that requires negotiation, both spatially and socially. This project aims to assemble a series of actions toward the design of a space to negotiate that realm of personal and social adaptation within the urban environment that comes with the relocation of self through immigration, or the disruption of a home by the presence of foreignness. The contemporary rural community must negotiate these conditions in a new way, as it is being affected by social changes that, unlike the urban context, it does not have the infrastructure to support. The architect enters the project as an active observer, her actions of interpretive investigation assembling a set of components of design gathered through strangers and locals that represent the identity of the site. These components will be used to design a public architecture that serves as the container of memory and generator of exchange, mediating between the physical landscape and the constructed landscape of the assembled personal identity of individuals. The project will serve as a vehicle to understand and assemble a rural public space that is inclusive of memory and provides agency for progress. As cultural groups are transferred through contexts, the constructed landscapes of identity and the physical landscapes are altered and derived by the juxtaposition of the two, forming a dynamic relationship that is simultaneously individual and multiple. This reciprocity is especially evident in the selected context of Arcadia, Florida where cultural identity is altered through a particular event, such as a drastic physical alteration (hurricane), instigating mutation in one or both landscapes, forcing a restructuring of the whole and an acknowledgment of not only absence of the lost, but also presence of the new identities.by Katice L. Helinski.M.Arch

    Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The work described in this article forms part of a study to suppress a population of the malaria vector <it>Anopheles arabiensis </it>in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described.</p> <p>Methods</p> <p>Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed.</p> <p>Results</p> <p>Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females.</p> <p>Conclusion</p> <p>It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented.</p

    A 15N stable isotope semen label to detect mating in the malaria mosquito Anopheles arabiensis Patton

    Get PDF
    In previous studies it was determined that the stable isotope 13-carbon can be used as a semen label to detect mating events in the malaria mosquito Anopheles arabiensis. In this paper we describe the use of an additional stable isotope, 15-nitrogen (15N), for that same purpose. Both stable isotopes can be analysed simultaneously in a mass spectrometer, offering the possibility to detect both labels in one sample in order to study complex and difficult-to-detect mating events, such as multiple mating. 15N-glycine was added to larval rearing water and the target enrichment was 5 atom% 15N. Males from these trays were mated with unlabelled virgin females, and spiked spermathecae were analysed for isotopic composition after mating using mass spectrometry. Results showed that spermathecae positive for semen could be distinguished from uninseminated or control samples using the raw δ15N‰ values. The label persisted in spermathecae for up to 5 days after insemination, and males aged 10 days transferred similar amounts of label as males aged 4 days. There were no negative effects of the label on larval survival and male longevity. Enrichment of teneral mosquitoes after emergence was 4.85 ± 0.10 atom% 15N. A threshold value defined as 3 standard deviations above the mean of virgin (i.e. uninseminated spermathecae) samples was successful in classifying a large proportion of samples correctly (i.e. on average 95%). We conclude that alongside 13C, 15N can be used to detect mating in Anopheles and the suitability of both labels is briefly discussed
    • …
    corecore