127 research outputs found

    Improving Reachability and Navigability in Recommender Systems

    Full text link
    In this paper, we investigate recommender systems from a network perspective and investigate recommendation networks, where nodes are items (e.g., movies) and edges are constructed from top-N recommendations (e.g., related movies). In particular, we focus on evaluating the reachability and navigability of recommendation networks and investigate the following questions: (i) How well do recommendation networks support navigation and exploratory search? (ii) What is the influence of parameters, in particular different recommendation algorithms and the number of recommendations shown, on reachability and navigability? and (iii) How can reachability and navigability be improved in these networks? We tackle these questions by first evaluating the reachability of recommendation networks by investigating their structural properties. Second, we evaluate navigability by simulating three different models of information seeking scenarios. We find that with standard algorithms, recommender systems are not well suited to navigation and exploration and propose methods to modify recommendations to improve this. Our work extends from one-click-based evaluations of recommender systems towards multi-click analysis (i.e., sequences of dependent clicks) and presents a general, comprehensive approach to evaluating navigability of arbitrary recommendation networks

    Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order

    Full text link
    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work

    Protection from Evil and Good: The Differential Effects of Page Protection on Wikipedia Article Quality

    Full text link
    Wikipedia, the Web's largest encyclopedia, frequently faces content disputes or malicious users seeking to subvert its integrity. Administrators can mitigate such disruptions by enforcing "page protection" that selectively limits contributions to specific articles to help prevent the degradation of content. However, this practice contradicts one of Wikipedia's fundamental principles−-that it is open to all contributors−-and may hinder further improvement of the encyclopedia. In this paper, we examine the effect of page protection on article quality to better understand whether and when page protections are warranted. Using decade-long data on page protections from the English Wikipedia, we conduct a quasi-experimental study analyzing pages that received "requests for page protection"−-written appeals submitted by Wikipedia editors to administrators to impose page protections. We match pages that indeed received page protection with similar pages that did not and quantify the causal effect of the interventions on a well-established measure of article quality. Our findings indicate that the effect of page protection on article quality depends on the characteristics of the page prior to the intervention: high-quality articles are affected positively as opposed to low-quality articles that are impacted negatively. Subsequent analysis suggests that high-quality articles degrade when left unprotected, whereas low-quality articles improve. Overall, with our study, we outline page protections on Wikipedia and inform best practices on whether and when to protect an article.Comment: Under Review, 11 page

    Integrated Copy-Paste Checking: Design and Services

    Get PDF
    The advances in technology have made academic cheating far too easy for learners. Furthermore, the World-Wide-Web has brought about a widespread culture of easy-access to all sorts of information, thus reducing the need for learners to perform diligent research or study. E-learning systems would then need to incorporate the monitoring and checking for student expressions of reading and writing, while guiding them towards learning the rightful skills. This paper describes the architecture and design of an ..

    Enriching Tagging Systems with Google Query Tags

    Get PDF
    Abstract. A

    On the application of the Two-Factor Theory to online employer reviews

    Get PDF
    • …
    corecore