166 research outputs found
Decoupling of the general scalar field mode and the solution space for Bianchi type I and V cosmologies coupled to perfect fluid sources
The scalar field degree of freedom in Einstein's plus Matter field equations
is decoupled for Bianchi type I and V general cosmological models. The source,
apart from the minimally coupled scalar field with arbitrary potential V(Phi),
is provided by a perfect fluid obeying a general equation of state p =p(rho).
The resulting ODE is, by an appropriate choice of final time gauge affiliated
to the scalar field, reduced to 1st order, and then the system is completely
integrated for arbitrary choices of the potential and the equation of state.Comment: latex2e source file,14 pages, no figures; (v3): minor corrections, to
appear in J. Math. Phy
A Fokker-Planck formalism for diffusion with finite increments and absorbing boundaries
Gaussian white noise is frequently used to model fluctuations in physical
systems. In Fokker-Planck theory, this leads to a vanishing probability density
near the absorbing boundary of threshold models. Here we derive the boundary
condition for the stationary density of a first-order stochastic differential
equation for additive finite-grained Poisson noise and show that the response
properties of threshold units are qualitatively altered. Applied to the
integrate-and-fire neuron model, the response turns out to be instantaneous
rather than exhibiting low-pass characteristics, highly non-linear, and
asymmetric for excitation and inhibition. The novel mechanism is exhibited on
the network level and is a generic property of pulse-coupled systems of
threshold units.Comment: Consists of two parts: main article (3 figures) plus supplementary
text (3 extra figures
Noise Suppression and Surplus Synchrony by Coincidence Detection
The functional significance of correlations between action potentials of
neurons is still a matter of vivid debates. In particular it is presently
unclear how much synchrony is caused by afferent synchronized events and how
much is intrinsic due to the connectivity structure of cortex. The available
analytical approaches based on the diffusion approximation do not allow to
model spike synchrony, preventing a thorough analysis. Here we theoretically
investigate to what extent common synaptic afferents and synchronized inputs
each contribute to closely time-locked spiking activity of pairs of neurons. We
employ direct simulation and extend earlier analytical methods based on the
diffusion approximation to pulse-coupling, allowing us to introduce precisely
timed correlations in the spiking activity of the synaptic afferents. We
investigate the transmission of correlated synaptic input currents by pairs of
integrate-and-fire model neurons, so that the same input covariance can be
realized by common inputs or by spiking synchrony. We identify two distinct
regimes: In the limit of low correlation linear perturbation theory accurately
determines the correlation transmission coefficient, which is typically smaller
than unity, but increases sensitively even for weakly synchronous inputs. In
the limit of high afferent correlation, in the presence of synchrony a
qualitatively new picture arises. As the non-linear neuronal response becomes
dominant, the output correlation becomes higher than the total correlation in
the input. This transmission coefficient larger unity is a direct consequence
of non-linear neural processing in the presence of noise, elucidating how
synchrony-coded signals benefit from these generic properties present in
cortical networks
Correlations in spiking neuronal networks with distance dependent connections
Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with current-based synapses derived from a simple ring topology. We find that in particular the distribution of correlation coefficients of subthreshold activity can tell apart random networks from networks with distance dependent connectivity. Such distributions can be estimated by sampling from random pairs. We also demonstrate the crucial role of the weight distribution, most notably the compliance with Dales principle, for the activity dynamics in recurrent networks of different types
Self-Organized Criticality in Developing Neuronal Networks
Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV) of cortical cell cultures (n = 20) and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV) is followed by a supercritical (≈20 DIV) and then a subcritical one (≈36 DIV) until the network finally reaches stable criticality (≈58 DIV). Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro
How Structure Determines Correlations in Neuronal Networks
Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks
- …