376 research outputs found

    Singular Value Decomposition-Based Method for Sliding Mode Control and Optimization of Nonlinear Neutral Systems

    Get PDF
    The sliding mode control and optimization are investigated for a class of nonlinear neutral systems with the unmatched nonlinear term. In the framework of Lyapunov stability theory, the existence conditions for the designed sliding surface and the stability bound α∗ are derived via twice transformations. The further results are to develop an efficient sliding mode control law with tuned parameters to attract the state trajectories onto the sliding surface in finite time and remain there for all the subsequent time. Finally, some comparisons are made to show the advantages of our proposed method

    Investigation of Crack Propagation Behaviour in Thin-Rim Gears: Experimental Tests and Numerical Simulations

    Get PDF
    Thin-rim gears are widely used in industrial fields such as aerospace and electric vehicles due to the advantage of light weight. Yet, the root crack fracture failure of thin-rim gears significantly limits their application and further affects the reliability and safety of high-end equipment. In this work, the root crack propagation behavior of thin-rim gears is experimentally and numerically investigated. The crack initiation position and crack propagation path for different backup ratio gears are simulated using gear finite element (FE) models. The crack initiation position is determined using the maximum gear root stress position. An extended FE method coupled with commercial software ABAQUS is used to simulate the gear root crack propagation. The simulation results are then verified by conducting experimental tests for different backup ratio gears based on a dedicated designed single-tooth bending test device

    Inhibitors of Phosphatidylinositol 3′-Kinases Promote Mitotic Cell Death in HeLa Cells

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport. However, the involvement of the PI3K pathway in the regulation of mitotic cell death remains unclear. In this study, we treated HeLa cells with the PI3K inhibitors, 3-methyladenine (3-MA, as well as a widely used autophagy inhibitor) and wortmannin to examine their effects on cell fates using live cell imaging. Treatment with 3-MA decreased cell viability in a time- and dose-dependent manner and was associated with caspase-3 activation. Interestingly, 3-MA-induced cell death was not affected by RNA interference-mediated knockdown (KD) of beclin1 (an essential protein for autophagy) in HeLa cells, or by deletion of atg5 (an essential autophagy gene) in mouse embryonic fibroblasts (MEFs). These data indicate that cell death induced by 3-MA occurs independently of its ability to inhibit autophagy. The results from live cell imaging studies showed that the inhibition of PI3Ks increased the occurrence of lagging chromosomes and cell cycle arrest and cell death in prometaphase. Furthermore, PI3K inhibitors promoted nocodazole-induced mitotic cell death and reduced mitotic slippage. Overexpression of Akt (the downstream target of PI3K) antagonized PI3K inhibitor-induced mitotic cell death and promoted nocodazole-induced mitotic slippage. These results suggest a novel role for the PI3K pathway in regulating mitotic progression and preventing mitotic cell death and provide justification for the use of PI3K inhibitors in combination with anti-mitotic drugs to combat cancer

    p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Get PDF
    BACKGROUND: p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. PRINCIPAL FINDINGS: Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. CONCLUSIONS: p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway

    Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions

    Get PDF
    Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism

    Late twentieth century rapid increase in high Asian seasonal snow and glacierderived streamflow tracked by tree rings of the upper Indus River basin

    Get PDF
    Given the reported increasing trends in high Asian streamflow and rapidly increasing water demand in the Indian subcontinent, it is necessary to understand the long-term changes and mechanisms of snow- and glacier-melt-driven streamflow in this area. Thus, we have developed a June–July streamflow reconstruction for the upper Indus River watershed located in northern Pakistan. This reconstruction used a temperature-sensitive tree-ring width chronology of Pinus wallichiana, and explained 40.9% of the actual June–July streamflow variance during the common period 1970–2008. The high level of streamflow (1990–2017) exceeds that of any other time and is concurrent with the impact of recent climate warming that has resulted in accelerated glacier retreats across high Asia. The streamflow reconstruction indicated a pronounced reduction in streamflow in the upper Indus River basin during solar minima (Maunder, Dalton, and Damon). Shorter periods (years) of low streamflow in the reconstruction corresponded to major volcanic eruptions. Extreme low and high streamflows were also linked with sea surface temperature. The streamflow reconstruction also provides a long-term context for recent high Asian streamflow variability resulting from seasonal snow and glaciers that is critically needed for water resources management and assessment
    • …
    corecore