2 research outputs found

    Modelling the effect of habitat composition and roads on the occurrence and number of moose damage at multiple scales

    Get PDF
    We modelled the effect of habitat composition and roads on the number and occurrence of moose (Alces alces L.) damage in Ostrobothnia and Lapland using a zero-inflated count model. Models were developed for 1 km2, 25 km2 and 100 km2 landscapes consisting of equilateral rectangular grid cells. Count models predict the number of damage, i.e. the number of plantations and zero models the probability of a landscape being without damage for a given habitat composition. The number of moose damage in neighboring grid cells was a significant predictor in all models. The proportion of mature forest was the most frequent significant variable, and an increasing admix-ture of mature forests among plantations increased the number and occurrence of damage. The amount of all types of plantations was the second most common significant variable predicting increasing damage along with increasing amount of plantations. An increase in thinning forests as an admixture also increased damage in 1 km2 landscapes in both areas, whereas an increase in pine-dominated thinning forests in Lapland reduced the number of damage in 25 km2 landscapes. An increasing amount of inhabited areas in Ostrobothnia and the length of connecting roads in Lapland reduced the number of damage in 1 and 25 km2 landscapes. Differences in model vari-ables between areas suggest that models of moose damage risk should be adjusted according to characteristics that are specific to the study area.We modelled the effect of habitat composition and roads on the number and occurrence of moose (Alces alces L.) damage in Ostrobothnia and Lapland using a zero-inflated count model. Models were developed for 1 km(2), 25 km(2) and 100 km(2) landscapes consisting of equilateral rectangular grid cells. Count models predict the number of damage, i.e. the number of plantations and zero models the probability of a landscape being without damage for a given habitat composition. The number of moose damage in neighboring grid cells was a significant predictor in all models. The proportion of mature forest was the most frequent significant variable, and an increasing admixture of mature forests among plantations increased the number and occurrence of damage. The amount of all types of plantations was the second most common significant variable predicting increasing damage along with increasing amount of plantations. An increase in thinning forests as an admixture also increased damage in 1 km(2) landscapes in both areas, whereas an increase in pine-dominated thinning forests in Lapland reduced the number of damage in 25 km(2) landscapes. An increasing amount of inhabited areas in Ostrobothnia and the length of connecting roads in Lapland reduced the number of damage in 1 and 25 km(2) landscapes. Differences in model variables between areas suggest that models of moose damage risk should be adjusted according to characteristics that are specific to the study area.Peer reviewe

    Tree Resin Flow Dynamics during an Experimentally Induced Attack by Ips avulsus, I. calligraphus, and I. grandicollis

    Get PDF
    The success of tree colonization by bark beetles depends on their ability to overcome host tree defenses, including resin exudation and toxic chemicals, which deter bark beetle colonization. Resin defenses during insect outbreaks are challenging to study in situ, as outbreaks are stochastic events that progress quickly and thus preclude the establishment of baseline observations of non-infested controls. We use synthetic aggregation pheromones to demonstrate that confined Ips bark beetle herbivory can be successfully initiated to provide opportunities for studying interactions between bark beetles and their hosts, including the dynamics of constitutive and induced resin exudation. In Pinus taeda L. plantations between 12 and 19 years old in North and South Carolina, U.S., trees were affixed with pheromone lures, monitored for evidence of bark beetle attacks, and resin samples were collected throughout the growing season. Baiting increased beetle herbivory to an extent sufficient to produce an induced resin response. Attacked trees exuded about three times more resin at some time than control trees. This supports previous work that demonstrated that information on constitutive resin dynamics alone provides an incomplete view of a host tree's resistance to bark beetle attack.Peer reviewe
    corecore