745 research outputs found

    Correlated electrons in Fe-As compounds: a quantum chemical perspective

    Full text link
    State-of-the-art quantum chemical methods are applied to the study of the multiorbital correlated electronic structure of a Fe-As compound, the recently discovered LiFeAs. Our calculations predict a high-spin, S=2, ground-state configuration for the Fe ions, which shows that the on-site Coulomb interactions are substantial. Also, orbital degeneracy in the (xz,yz) sector and a three-quarter filling of these levels suggest the presence of strong fluctuations and are compatible with a low metallic conductivity in the normal state. The lowest electron-removal states have As 4p character, in analogy to the ligand hole states in p-type cuprate superconductors

    Fermiology of Cuprates from First Principles: From Small Pockets to the Luttinger Fermi surface

    Full text link
    Fermiology, the shape and size of the Fermi surface, underpins the low-temperature physical properties of a metal. Recent investigations of the Fermi surface of high-Tc superconductors, however, show a most unusual behavior: upon addition of carriers, ``Fermi'' pockets appear around nodal (hole doping) and antinodal (electron doping) regions of the Brillouin zone in the ``pseudogap'' state. With progressive doping, p, these evolve into well-defined Fermi surfaces around optimal doping (p_opt), with no pseudogap. Correspondingly, various physical responses, including d-wave superconductivity, evolve from highly anomalous, up to p_opt, to more conventional beyond. Describing this evolution holds the key to understanding high-temperature superconductivity. Here, we present ab initio quantum chemical results for cuprates, providing a quantitative description of the evolution of the Fermi surface with doping. Our results constitute an ab initio justification for several, hitherto proposed semiphenomenological theories, offering an unified basis for understanding of various, unusual physical responses of doped cuprates

    Two-boson Correlations in Various One-dimensional Traps

    Full text link
    A one-dimensional system of two trapped bosons which interact through a contact potential is studied using the optimized configuration interaction method. The rapid convergence of the method is demonstrated for trapping potentials of convex and non-convex shapes. The energy spectra, as well as natural orbitals and their occupation numbers are determined in function of the inter-boson interaction strength. Entanglement characteristics are discussed in dependence on the shape of the confining potential.Comment: 5 pages, 3 figure

    Electron correlations and bond-length fluctuations in copper oxides: from Zhang--Rice singlets to correlation bags

    Full text link
    We perform first principles, multiconfiguration calculations on clusters including several CuO6_6 octahedra and study the ground-state electron distribution and electron--lattice couplings when holes are added to the undoped d9p6d^9 p^6 configuration. We find that the so-called Zhang--Rice state on a single CuO4_4 plaquette is nearly degenerate with a state whose leading configuration is of the form Cu d9d^9-- O p5p^5-- Cu d9d^9. A strong coupling between the electronic and nuclear motion gives rise to large inter-site charge transfer effects for half-breathing displacements of the oxygen ions. Under the assumption of charge segregation into alternating hole-free and hole-rich stripes of Goodenough \cite{jbg_02,jbg_03}, our results seem to support the vibronic mechanism and the traveling charge-density wave model from Refs.\cite{jbg_02,jbg_03} for the superconductivity in copper oxides.Comment: submitted to Phys. Rev.

    Renormalization of the quasiparticle hopping integrals by spin interactions in layered copper oxides

    Full text link
    Holes doped within the square CuO2 network specific to the cuprate superconducting materials have oxygen 2p character. We investigate the basic properties of such oxygen holes by wavefunction-based quantum chemical calculations on large embedded clusters. We find that a 2p hole induces ferromagnetic correlations among the nearest-neighbor Cu 3d spins. When moving through the antiferromagnetic background the hole must bring along this spin polarization cloud at nearby Cu sites, which gives rise to a substantial reduction of the effective hopping parameters. Such interactions can explain the relatively low values inferred for the effective hoppings by fitting the angle-resolved photoemission data. The effect of the background antiferromagnetic couplings of renormalizing the effective nearest-neighbor hopping is also confirmed by density-matrix renormalization-group model Hamiltonian calculations for chains and ladders of CuO4 plaquettes

    Spin-state transition and spin-polaron physics in cobalt oxide perovskites: ab initio approach based on quantum chemical methods

    Full text link
    A fully ab initio scheme based on quantum chemical wavefunction methods is used to investigate the correlated multiorbital electronic structure of a 3d-metal compound, LaCoO3. The strong short-range electron correlations, involving both Co and O orbitals, are treated by multireference techniques. The use of effective parameters like the Hubbard U and interorbital U', J terms and the problems associated with their explicit calculation are avoided with this approach. We provide new insight into the spin-state transition at about 90 K and the nature of charge carriers in the doped material. Our results indicate the formation of a t4e2 high-spin state in LaCoO3 for T>90 K. Additionally, we explain the paramagnetic phase in the low-temperature lightly doped compound through the formation of Zhang-Rice-like O hole states and ferromagnetic clusters

    Ab initio wavefunction based methods for excited states in solids: correlation corrections to the band structure of ionic oxides

    Full text link
    Ab initio wavefunction based methods are applied to the study of electron correlation effects on the band structure of oxide systems. We choose MgO as a prototype closed-shell ionic oxide. Our analysis is based on a local Hamiltonian approach and performed on finite fragments cut from the infinite solid. Localized Wannier functions and embedding potentials are obtained from prior periodic Hartree-Fock (HF) calculations. We investigate the role of various electron correlation effects in reducing the HF band gap and modifying the band widths. On-site and nearest-neighbor charge relaxation as well as long-range polarization effects are calculated. Whereas correlation effects are essential for computing accurate band gaps, we found that they produce smaller changes on the HF band widths, at least for this material. Surprisingly, a broadening effect is obtained for the O 2p valence bands. The ab initio data are in good agreement with the energy gap and band width derived from thermoreflectance and x-ray photoemission experiments. The results show that the wavefunction based approach applied here allows for well controlled approximations and a transparent identification of the microscopic processes which determine the electronic band structure

    The convergence of the ab-initio many-body expansion for the cohesive energy of solid mercury

    Full text link
    A many-body expansion for mercury clusters of the form E = \sum_{i<j}\Delta \epsilon_{ij} + \sum_{i<j<k}\Delta \epsilon_{ijk} + ... \quad, does not converge smoothly with increasing cluster size towards the solid state. Even for smaller cluster sizes (up to n=6), where van der Waals forces still dominate, one observes bad convergence behaviour. For solid mercury the convergence of the many-body expansion can dramatically be improved by an incremental procedure within an embedded cluster approach. Here one adds the coupled cluster many-body electron correlation contributions of the embedded cluster to the bulk HF energy. In this way we obtain a cohesive energy (not corrected for zero-point vibration) of 0.79 eV in perfect agreement with the experimental value.Comment: 10 pages, 3 figures, accepted PR

    Effective interactions and large-scale diagonalization for quantum dots

    Full text link
    The widely used large-scale diagonalization method using harmonic oscillator basis functions (an instance of the Rayleigh-Ritz method, also called a spectral method, configuration-interaction method, or ``exact diagonalization'' method) is systematically analyzed using results for the convergence of Hermite function series. We apply this theory to a Hamiltonian for a one-dimensional model of a quantum dot. The method is shown to converge slowly, and the non-smooth character of the interaction potential is identified as the main problem with the chosen basis, while on the other hand its important advantages are pointed out. An effective interaction obtained by a similarity transformation is proposed for improving the convergence of the diagonalization scheme, and numerical experiments are performed to demonstrate the improvement. Generalizations to more particles and dimensions are discussed.Comment: 7 figures, submitted to Physical Review B Single reference error fixe
    • …
    corecore