153 research outputs found
Twisted Open Strings from Closed Strings: The WZW Orientation Orbifolds
Including {\it world-sheet orientation-reversing automorphisms}
in the orbifold program, we construct the operator
algebras and twisted KZ systems of the general WZW {\it orientation orbifold}
. We find that the orientation-orbifold sectors corresponding
to each are {\it twisted open} WZW strings, whose
properties are quite distinct from conventional open-string orientifold
sectors. As simple illustrations, we also discuss the classical (high-level)
limit of our construction and free-boson examples on abelian .Comment: 65 pages, typos correcte
On the Gannon-Lee Singularity Theorem in Higher Dimensions
The Gannon-Lee singularity theorems give well-known restrictions on the
spatial topology of singularity-free (i.e., nonspacelike geodesically
complete), globally hyperbolic spacetimes. In this paper, we revisit these
classic results in the light of recent developments, especially the failure in
higher dimensions of a celebrated theorem by Hawking on the topology of black
hole horizons. The global hyperbolicity requirement is weakened, and we expand
the scope of the main results to allow for the richer variety of spatial
topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra
New Horizons for Black Holes and Branes
We initiate a systematic scan of the landscape of black holes in any
spacetime dimension using the recently proposed blackfold effective worldvolume
theory. We focus primarily on asymptotically flat stationary vacuum solutions,
where we uncover large classes of new black holes. These include helical black
strings and black rings, black odd-spheres, for which the horizon is a product
of a large and a small sphere, and non-uniform black cylinders. More exotic
possibilities are also outlined. The blackfold description recovers correctly
the ultraspinning Myers-Perry black holes as ellipsoidal even-ball
configurations where the velocity field approaches the speed of light at the
boundary of the ball. Helical black ring solutions provide the first instance
of asymptotically flat black holes in more than four dimensions with a single
spatial U(1) isometry. They also imply infinite rational non-uniqueness in
ultraspinning regimes, where they maximize the entropy among all stationary
single-horizon solutions. Moreover, static blackfolds are possible with the
geometry of minimal surfaces. The absence of compact embedded minimal surfaces
in Euclidean space is consistent with the uniqueness theorem of static black
holes.Comment: 54 pages, 7 figures; v2 added references, added comments in the
subsection discussing the physical properties of helical black rings; v3
added references, fixed minor typo
Small doubling in groups
Let A be a subset of a group G = (G,.). We will survey the theory of sets A
with the property that |A.A| <= K|A|, where A.A = {a_1 a_2 : a_1, a_2 in A}.
The case G = (Z,+) is the famous Freiman--Ruzsa theorem.Comment: 23 pages, survey article submitted to Proceedings of the Erdos
Centenary conferenc
A Reformulation of the Hoop Conjecture
A reformulation of the Hoop Conjecture based on the concept of trapped circle
is presented. The problems of severe compactness in every spatial direction,
and of how to superpose the hoops with the surface of the black hole, are
resolved. A new conjecture concerning "peeling" properties of
dynamical/trapping horizons is propounded. A novel geometric Hoop inequality is
put forward. The possibility of carrying over the results to arbitrary
dimension is discussed.Comment: 6 pages, no figures. New references included, typos corrected,
explanatory comments added. Much shorter version, in order to match EPL
length restrictions. To be published in EP
Black Holes in Higher-Dimensional Gravity
These lectures review some of the recent progress in uncovering the phase
structure of black hole solutions in higher-dimensional vacuum Einstein
gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e.
static solutions with an event horizon in asymptotically flat spaces with
compact directions, and stationary solutions with an event horizon in
asymptotically flat space. Highlights include the recently constructed
multi-black hole configurations on the cylinder and thin rotating black rings
in dimensions higher than five. The phase diagram that is emerging for each of
the two classes will be discussed, including an intriguing connection that
relates the phase structure of Kaluza-Klein black holes with that of
asymptotically flat rotating black holes.Comment: latex, 49 pages, 5 figures. Lectures to appear in the proceedings of
the Fourth Aegean Summer School, Mytiline, Lesvos, Greece, September 17-22,
200
Instabilities of Black Strings and Branes
We review recent progress on the instabilities of black strings and branes
both for pure Einstein gravity as well as supergravity theories which are
relevant for string theory. We focus mainly on Gregory-Laflamme instabilities.
In the first part of the review we provide a detailed discussion of the
classical gravitational instability of the neutral uniform black string in
higher dimensional gravity. The uniform black string is part of a larger phase
diagram of Kaluza-Klein black holes which will be discussed thoroughly. This
phase diagram exhibits many interesting features including new phases,
non-uniqueness and horizon-topology changing transitions. In the second part,
we turn to charged black branes in supergravity and show how the
Gregory-Laflamme instability of the neutral black string implies via a
boost/U-duality map similar instabilities for non- and near-extremal smeared
branes in string theory. We also comment on instabilities of D-brane bound
states. The connection between classical and thermodynamic stability, known as
the correlated stability conjecture, is also reviewed and illustrated with
examples. Finally, we examine the holographic implications of the
Gregory-Laflamme instability for a number of non-gravitational theories
including Yang-Mills theories and Little String Theory.Comment: 119 pages, 16 figures. Invited review for Classical and Quantum
Gravit
Supersymmetric isolated horizons
We construct a covariant phase space for rotating weakly isolated horizons in
Einstein-Maxwell-Chern-Simons theory in all (odd) dimensions. In
particular, we show that horizons on the corresponding phase space satisfy the
zeroth and first laws of black-hole mechanics. We show that the existence of a
Killing spinor on an isolated horizon in four dimensions (when the Chern-Simons
term is dropped) and in five dimensions requires that the induced (normal)
connection on the horizon has to vanish, and this in turn implies that the
surface gravity and rotation one-form are zero. This means that the
gravitational component of the horizon angular momentum is zero, while the
electromagnetic component (which is attributed to the bulk radiation field) is
unconstrained. It follows that an isolated horizon is supersymmetric only if it
is extremal and nonrotating. A remarkable property of these horizons is that
the Killing spinor only has to exist on the horizon itself. It does not have to
exist off the horizon. In addition, we find that the limit when the surface
gravity of the horizon goes to zero provides a topological constraint.
Specifically, the integral of the scalar curvature of the cross sections of the
horizon has to be positive when the dominant energy condition is satisfied and
the cosmological constant is zero or positive, and in particular
rules out the torus topology for supersymmetric isolated horizons (unless
) if and only if the stress-energy tensor is of the form
such that for any two null vectors and with
normalization on the horizon.Comment: 26 pages, 1 figure; v2: typos corrected, topology arguments
corrected, discussion of black rings and dipole charge added, references
added, version to appear in Classical and Quantum Gravit
Environmental Policy Design and the Fragmentation of International Markets for Innovation
It has long been argued that the implementation of market-based environmental policy instruments such as environmentally-related taxes and tradable permits is likely to lead to greater technological innovation than more direct forms of regulation such as technology-based standards. One of the principle reasons for such an assertion is that they give firms greater flexibility? to identify the optimal means of innovating to meet the given environmental objective. Thus, it can be argued that the benefits of (some) market-based instruments can also be true of well-designed performance standards. While the theoretical case for the use of flexible policy instruments is well-developed, empirical evidence remains limited. Drawing upon a database of patent applications from a cross-section of countries evidence is provided for the positive effect of flexibility? of the domestic environmental policy regime on the propensity for the inventions induced to be diffused widely in the world economy. For a given level of policy stringency, countries with more flexible environmental policies are more likely to generate innovations which are diffused widely and are more likely to benefit from innovations generated elsewhere. And while the focus of this paper is on the specific case of environmental policy, the discussion is equally applicable to aspects of product and labour market regulation which have implications for technological innovation, such as product and workplace safety
- …