29 research outputs found

    Retroviral DNA—the silent winner: blood transfusion containing latent feline leukemia provirus causes infection and disease in naïve recipient cats

    Get PDF
    Additional File 7: Figure S5. Photo of a blood smear from cat R1 (group B) with lymphoblastic leukemia at the time of necropsy. Lymphoblast cells are marked with an arrow. a) The picture displays a large lymphoblast with moderate amounts of basophilic cytoplasm and a large, round nucleus with fine chromatin patterns and several large, indistinct nucleoli. There is also a medium-sized lymphocyte with moderate amounts of pale basophilic cytoplasm and a round nucleus with a coarse chromatin pattern. b) The picture shows a medium-sized to large lymphoblast with small amounts of basophilic cytoplasm and a large, round nucleus with a fine chromatin pattern and two prominent round nucleoli

    Quantitative TaqMan® real-time PCR assays for gene expression normalisation in feline tissues

    Get PDF
    ABSTRACT: BACKGROUND: Gene expression analysis is an important tool in contemporary research, with real-time PCR as the method of choice for quantifying transcription levels. Co-analysis of suitable reference genes is crucial for accurate expression normalisation. Reference gene expression may vary, e.g., among species or tissues; thus, candidate genes must be tested prior to use in expression studies. The domestic cat is an important study subject in both medical research and veterinary medicine. The aim of the present study was to develop TaqMan(R) real-time PCR assays for eight potential reference genes and to test their applicability for feline samples, including blood, lymphoid, endocrine, and gastrointestinal tissues from healthy cats, and neoplastic tissues from FeLV-infected cats. RESULTS: RNA extraction from tissues was optimised for minimal genomic DNA (gDNA) contamination without use of a DNase treatment. Real-time PCR assays were established and optimised for v-abl Abelson murine leukaemia viral oncogene homolog (ABL), beta-actin (ACTB), beta-2-microglobulin (B2M), beta-glucuronidase (GUSB), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein S7 (RPS7), and tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ). The presence of pseudogenes was confirmed for four of the eight investigated genes (ACTB, HPRT, RPS7, and YWHAZ). The assays were tested together with previously developed TaqMan(R) assays for feline glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the universal 18S rRNA gene. Significant differences were found among the expression levels of the ten candidate reference genes, with a ~10;6-fold expression difference between the most abundant (18S rRNA) and the least abundant genes (ABL, GUSB, and HMBS). The expression stability determined by the geNorm and NormFinder programs differed significantly. Using the ANOVA-based NormFinder program, RPS7 was the most stable gene in the tissues studied, followed by ACTB and ABL; B2M, HPRT, and the 18S rRNA genes were the least stable ones. CONCLUSION: The reference gene expression stability varied considerably among the feline tissues investigated. No tested gene was optimal for normalisation in all tissues. For the majority of the tissues, two to three reference genes were necessary for accurate normalisation. The present study yields essential information on the correct choice of feline reference genes depending on the tissues analysed

    Feline leukaemia virus: half a century since its discovery

    Get PDF
    In the early 1960s, Professor William (Bill) F.H. Jarrett was presented with a timeGÇôspace cluster of cats with lymphoma identified by a local veterinary practitioner, Harry Pfaff, and carried out experiments to find if the condition might be caused by a virus, similar to lymphomas noted previously in poultry and mice. In 1964, the transmission of lymphoma in cats and the presence of virus-like particles that resembled GÇÿthe virus of murine leukaemiasGÇÖ in the induced tumours were reported in Nature. These seminal studies initiated research on feline leukaemia virus (FeLV) and launched the field of feline retrovirology. This review article considers the way in which some of the key early observations made by Bill Jarrett and his coworkers have developed in subsequent years and discusses progress that has been made in the field since FeLV was first discovered

    Dominance of highly divergent feline leukemia virus A progeny variants in a cat with recurrent viremia and fatal lymphoma

    Get PDF
    ABSTRACT: BACKGROUND: In a cat that had ostensibly recovered from feline leukemia virus (FeLV) infection, we observed the reappearance of the virus and the development of fatal lymphoma 8.5 years after the initial experimental exposure to FeLV-A/Glasgow-1. The goals of the present study were to investigate this FeLV reoccurrence and molecularly characterize the progeny viruses. RESULTS: The FeLV reoccurrence was detected by the presence of FeLV antigen and RNA in the blood and saliva. The cat was feline immunodeficiency virus positive and showed CD4+ T-cell depletion, severe leukopenia, anemia and a multicentric monoclonal B-cell lymphoma. FeLV-A, but not -B or -C, was detectable. Sequencing of the envelope gene revealed three FeLV variants that were highly divergent from the virus that was originally inoculated (89-91% identity to FeLV-A/Glasgow-1). In the long terminal repeat 31 point mutations, some previously described in cats with lymphomas, were detected. The FeLV variant tissue provirus and viral RNA loads were significantly higher than the FeLV-A/Glasgow-1 loads. Moreover, the variant loads were significantly higher in lymphoma positive compared to lymphoma negative tissues. An increase in the variant provirus blood load was observed at the time of FeLV reoccurrence. CONCLUSIONS: Our results demonstrate that ostensibly recovered FeLV provirus-positive cats may act as a source of infection following FeLV reactivation. The virus variants that had largely replaced the inoculation strain had unusually heavily mutated envelopes. The mutations may have led to increased viral fitness and/or changed the mutagenic characteristics of the virus

    GAPDH pseudogenes and the quantification of feline genomic DNA equivalents

    Get PDF
    Quantitative real-time PCR (qPCR) is broadly used to detect and quantify nucleic acid targets. In order to determine cell copy number and genome equivalents, a suitable reference gene that is present in a defined number in the genome is needed, preferably as a single copy gene. For most organisms, a variable number of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) pseudogenes have been reported. However, it has been suggested that a single-copy of the GAPDH pseudogene is present in the feline genome and that a GAPDH assay can therefore be used to quantify feline genomic DNA (gDNA). The aim of this study was to determine whether one or more GAPDH pseudogenes are present in the feline genome and to provide a suitable alternative qPCR system for the quantification of feline cell copy number and genome equivalents. Bioinformatics and sequencing results revealed that not just one but several closely related GAPDH-like sequences were present in the cat genome. We thus identified, developed, optimized, and validated an alternative reference gene assay using feline albumin (fALB). Our data emphasize the need for an alternative reference gene, apart from the GAPDH pseudogene, for the normalization of gDNA levels. We recommend using the fALB qPCR assay for future studies

    Adeno-associated vector-delivered CRISPR/SaCas9 system reduces Feline Leukemia Virus production in vitro

    Full text link
    Feline leukemia virus (FeLV) is a retrovirus of cats worldwide. High viral loads are associated with progressive infection and the death of the host, due to FeLV-associated disease. In contrast, low viral loads, an effective immune response, and a better clinical outcome can be observed in cats with regressive infection. We hypothesize that by lowering viral loads in progressively infected cats, using CRISPR/SaCas9-assisted gene therapy, the cat’s immune system may be permitted to direct the infection towards a regressive outcome. In a step towards this goal, the present study evaluates different adeno-associated vectors (AAVs) for their competence in delivering a gene editing system into feline cells, followed by investigations of the CRISPR/SaCas9 targeting efficiency for different sites within the FeLV provirus. Nine natural AAV serotypes, two AAV hybrid strains, and Anc80L65, an in silico predicted AAV ancestor, were tested for their potential to infect different feline cell lines and feline primary cells. AAV-DJ revealed superior infection efficiency and was thus employed in subsequent transduction experiments. The introduction of double-strand breaks, using the CRISPR/SaCas9 system targeting 12 selected FeLV provirus sites, was confirmed by T7 endonuclease 1 (T7E1), as well as Tracking of Indels by Decomposition (TIDE) analysis. The highest percentage (up to 80%) of nonhomologous end-joining (NHEJ) was found in the highly conserved gag and pol regions. Subsequent transduction experiments, using AAV-DJ, confirmed indel formation and showed a significant reduction in FeLV p27 antigen for some targets. The targeting of the FeLV provirus was efficient when using the CRISPR/SaCas9 approach in vitro. Whether the observed extent of provirus targeting will be sufficient to provide progressively FeLV-infected cats with the means to overcome the infection needs to be further investigated in vivo

    Pre-existing antibodies to candidate gene therapy vectors (adeno-associated vector serotypes) in domestic cats

    Get PDF
    Adeno-associated virus (AAV) vectors represent promising candidates for gene therapy; however, pre-existing neutralizing antibodies (NAb) may reduce AAV vector delivery efficiency. In this study, the presence of AAV NAb was investigated in cats, which serve as a larger and outbred animal model for the prediction of gene therapy outcomes in humans but also in cats.Serum/plasma samples from 230 client-owned Swiss cats and 20 specified pathogen-free cats were investigated for NAb to AAV1, AAV2, AAV5, AAV6, AAV7, AAV8 and AAV9 using in vitro transduction inhibition and a beta-galactosidase assay. NAb to all tested AAV serotypes were found. Of the client-owned cats, 53% had NAb to one or more of the AAV serotypes. NAb (≥1:10) were found at frequencies of 5% (AAV6) to 28% (AAV7). The highest titers were found against AAV7 (≥1:160). The NAb prevalence to AAV2, AAV7 and AAV9 differed geographically. Regarding titers ≥1:10 against single AAV serotypes, age, breed and sex of the cats were not associated with the NAb prevalence. Cats with titers ≥1:20 against AAV2 and titers ≥1:40 against AAV7 were significantly younger than cats with low/no titers, and purebred cats were significantly more likely than non-purebred cats to have NAb to AAV2 (≥1:40). Additionally, regarding NAb to all AAV combined, female cats were significantly more likely than male cats to have NAb titers ≥1:40. Preliminary data using AAV-DJ indicated that less pre-existing NAb to the hybrid AAV-DJ can be expected compared to the wild-type AAV serotypes. AAV NAb will need to be taken into account for future in vivo gene therapy studies in cats

    Pre-existing antibodies to candidate gene therapy vectors (adeno-associated vector serotypes) in domestic cats.

    No full text
    Adeno-associated virus (AAV) vectors represent promising candidates for gene therapy; however, pre-existing neutralizing antibodies (NAb) may reduce AAV vector delivery efficiency. In this study, the presence of AAV NAb was investigated in cats, which serve as a larger and outbred animal model for the prediction of gene therapy outcomes in humans but also in cats.Serum/plasma samples from 230 client-owned Swiss cats and 20 specified pathogen-free cats were investigated for NAb to AAV1, AAV2, AAV5, AAV6, AAV7, AAV8 and AAV9 using in vitro transduction inhibition and a beta-galactosidase assay. NAb to all tested AAV serotypes were found. Of the client-owned cats, 53% had NAb to one or more of the AAV serotypes. NAb (≥1:10) were found at frequencies of 5% (AAV6) to 28% (AAV7). The highest titers were found against AAV7 (≥1:160). The NAb prevalence to AAV2, AAV7 and AAV9 differed geographically. Regarding titers ≥1:10 against single AAV serotypes, age, breed and sex of the cats were not associated with the NAb prevalence. Cats with titers ≥1:20 against AAV2 and titers ≥1:40 against AAV7 were significantly younger than cats with low/no titers, and purebred cats were significantly more likely than non-purebred cats to have NAb to AAV2 (≥1:40). Additionally, regarding NAb to all AAV combined, female cats were significantly more likely than male cats to have NAb titers ≥1:40. Preliminary data using AAV-DJ indicated that less pre-existing NAb to the hybrid AAV-DJ can be expected compared to the wild-type AAV serotypes. AAV NAb will need to be taken into account for future in vivo gene therapy studies in cats

    Decreased sensitivity of the serological detection of feline immunodeficiency virus infection potentially due to imported genetic variants

    Get PDF
    Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats worldwide. Diagnosis usually relies on antibody screening by point-of-care tests (POCT), e.g., by enzyme-linked immunosorbent assays (ELISA), and confirmation using Western blot (WB). We increasingly observed ELISA-negative, WB-positive samples and aimed to substantiate these observations using 1194 serum/plasma samples collected from 1998 to 2019 primarily from FIV-suspect cats. While 441 samples tested positive and 375 tested negative by ELISA and WB, 81 samples had discordant results: 70 were false ELISA-negative (WB-positive) and 11 were false ELISA-positive (WB-negative); 297 ambiguous results were not analyzed further. The diagnostic sensitivity and specificity of the ELISA (82% and 91%, respectively) were lower than those reported in 1995 (98% and 97%, respectively). The diagnostic efficiency was reduced from 97% to 86%. False ELISA-negative samples originated mainly (54%) from Switzerland (1995: 0%). Sixty-four false ELISA-negative samples were available for POCT (SNAPTM^{TM}/WITNESSR^{R}): five were POCT-positive. FIV RT-PCR was positive for two of these samples and was weakly positive for two ELISA- and POCT-negative samples. Low viral loads prohibited sequencing. Our results suggest that FIV diagnosis has become more challenging, probably due to increasing travel by cats and the introduction of new FIV isolates not recognized by screening assays

    Long-term follow up of feline leukemia virus infection and characterization of viral RNA loads using molecular methods in tissues of cats with different infection outcomes

    Full text link
    It is a remarkable feature for a retrovirus that an infection with feline leukemia virus (FeLV) can result in various outcomes. Whereas some cats contain the infection and show a regressive course, others stay viremic and succumb to the infection within a few years. We hypothesized, that differences in the infection outcome might be causally linked to the viral RNA and provirus loads within the host and these loads therefore may give additional insight into the pathogenesis of the virus. Thus, the goals of the present study were to follow-up on experimentally infected cats and investigate tissues from cats with different infection outcomes using sensitive, specific TaqMan real-time PCR and reverse transcriptase (RT)-PCR. Nineteen experimentally FeLV-A/Glasgow-1-infected cats were categorized into having regressive, progressive or reactivated FeLV infection according to follow-up of FeLV p27 antigen detection in the blood. Remarkably, regressively infected cats showed detectable provirus and viral RNA loads in almost all of the 27 tested tissues, even many years after virus exposure. Moreover, some regressively infected cats reactivated the infection, and these cats had intermediate to high viral RNA and provirus tissue loads. The highest loads were found in viremic cats, independent of their health status. Tissues that represented sites of virus replication and shedding revealed the highest viral RNA and provirus loads, while the lowest loads were present in muscle and nerve tissues. A supplementary analysis of 20 experimentally infected cats with progressive infection revealed a median survival time of 3.1 years (range from 0.6 to 6.5 years); ∼70% (n=14) of these cats developed lymphoma, while leukemia and non-regenerative anemia were observed less frequently. Our results demonstrate that the different infection outcomes are associated with differences in viral RNA and provirus tissue loads. Remarkably, no complete clearance of FeLV viral RNA or provirus was detected in cats with regressive infection, even up to 12 years after exposure. In several cases FeLV reactivation could be observed. Thus, retroviruses integrated as provirus into the host's genome, could not be eliminated completely by the host and maintained their full potential for replication and reactivation
    corecore