18 research outputs found
Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury
BACKGROUND—Small animal models have been used in traumatic brain injury (TBI) research to investigate the basic mechanisms and pathology of TBI. Unfortunately, successful TBI investigations in small animal models have not resulted in marked improvements in clinical outcomes of TBI patients.
OBJECTIVE—To develop a clinically relevant immature large animal model of pediatric neurocritical care following TBI. METHODS—Eleven 4 week old piglets were randomized to either rapid axial head rotation without impact (N=6) or instrumented sham (N=5). All animals had an intracranial pressure monitor, brain tissue oxygen (PbtO2) probe, and cerebral microdialysis probe placed in the frontal lobe and data collected for 6 h following injury.
RESULTS—Injured animals had sustained elevations in intracranial pressure and lactatepyruvate ratio (LPR), and decreased PbtO2 compared to sham. PbtO2 and LPR from separate frontal lobes had strong linear correlation in both sham and injured animals. Neuropathologic examination demonstrated significant axonal injury and infarct volumes in injured animals compared to sham at 6 hours post-injury. Averaged over time, PbtO2 in both injured and sham animals had a strong inverse correlation with total injury volume. Average LPR had a strong correlation with total injury volume.
CONCLUSION—LPR and PbtO2 can be utilized as serial non-terminal secondary markers in our injury model for neuropathology, and as evaluation metrics for novel interventions and therapeutics in the acute post-injury period. This translational model bridges a vital gap in knowledge between TBI studies in small animal models and clinical trials in the pediatric TBI population
Effect of mattress deflection on CPR quality assessment for older children and adolescents
Appropriate chest compression (CC) depth is associated with improved CPR outcome. CCs provided in hospital are often conducted on a compliant mattress. The objective was to quantify the effect of mattress compression on the assessment of CPR quality in children.
Methods: A force and deflection sensor (FDS) was used during CPR in the Pediatric Intensive Care Unit and Emergency Department of a children's hospital. The sensor was interposed between the chest of the patient and hands of the rescuer and measured CC depth. Following CPR event, each event was reconstructed with a manikin and an identical mattress/backboard/patient configuration. CCs were performed using FDS on the sternum and a reference accelerometer attached to the spine of the manikin, providing a means to Calculate the mattress deflection.
Results: Twelve CPR events with 14,487 CC (11 patients, median age 14.9 years) were recorded and reconstructed: 9 on ICU beds (9296 CC), 3 on stretchers (5191 CC). Measured mean CC depth during CPR was 47 +/- 8 mm on ICU beds, and 45 +/- 7 mm on stretcher beds with overestimation of 13 +/- 4 mm and 4 +/- 1 mm, respectively, due to mattress compression. After adjusting for this, the proportion of CC that met the CPR guidelines decreased from 88.4 to 31.8% on ICU beds (p < 0.001), and 86.3 to 64.7% on stretcher (p < 0.001 The proportion of appropriate depth CC was significantly smaller on ICU beds (p < 0.001).
Conclusion: CC conducted on a non-rigid surface may not be deep enough. FDS may overestimate CC depth by 28% on ICU beds, and 10% on stretcher beds
Effect of a pediatric early warning system on all-cause mortality in Hospitalized pediatric patients: The epoch randomized clinical trial
IMPORTANCE: There is limited evidence that the use of severity of illness scores in pediatric patients can facilitate timely admission to the intensive care unit or improve patient outcomes. OBJECTIVE: To determine the effect of the Bedside Paediatric Early Warning System (BedsidePEWS) on all-cause hospital mortality and late admission to the intensive care unit (ICU), cardiac arrest, and ICU resource use. DESIGN, SETTING, AND PARTICIPANTS: A multicenter cluster randomized trial of 21 hospitals located in 7 countries (Belgium, Canada, England, Ireland, Italy, New Zealand, and the Netherlands) that provided inpatient pediatric care for infants (gestational age ≥37 weeks) to teenagers (aged ≤18 years). Participating hospitals had continuous physician staffing and subspecialized pediatric services. Patient enrollment began on February 28, 2011, and ended on June 21, 2015. Follow-up ended on July 19, 2015. INTERVENTIONS: The BedsidePEWS intervention (10 hospitals) was compared with usual care (no severity of illness score; 11 hospitals). MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause hospital mortality. The secondary outcome was a significant clinical deterioration event, which was defined as a composite outcome reflecting late ICU admission. Regression analyses accounted for hospital-level clustering and baseline rates. RESULTS: Among 144539 patient discharges at 21 randomized hospitals, there were 559 443 patient-days and 144539 patients (100%) completed the trial. All-cause hospital mortality was 1.93 per 1000 patient discharges at hospitals with BedsidePEWS and 1.56 per 1000 patient discharges at hospitals with usual care (adjusted between-group rate difference, 0.01 [95% CI, -0.80 to 0.81 per 1000 patient discharges]; adjusted odds ratio, 1.01 [95% CI, 0.61 to 1.69]; P =.96). Significant clinical deterioration events occurred during 0.50 per 1000 patient-days at hospitals with BedsidePEWS vs 0.84 per 1000 patient-days at hospitals with usual care (adjusted between-group rate difference, -0.34 [95% CI, -0.73 to 0.05 per 1000 patient-days]; adjusted rate ratio, 0.77 [95% CI, 0.61 to 0.97]; P =.03). CONCLUSIONS AND RELEVANCE: Implementation of the Bedside Paediatric Early Warning System compared with usual care did not significantly decrease all-cause mortality among hospitalized pediatric patients. These findings do not support the use of this system to reduce mortality
Effect of mattress deflection on CPR quality assessment for older children and adolescents
Appropriate chest compression (CC) depth is associated with improved CPR outcome. CCs provided in hospital are often conducted on a compliant mattress. The objective was to quantify the effect of mattress compression on the assessment of CPR quality in children.
Methods: A force and deflection sensor (FDS) was used during CPR in the Pediatric Intensive Care Unit and Emergency Department of a children's hospital. The sensor was interposed between the chest of the patient and hands of the rescuer and measured CC depth. Following CPR event, each event was reconstructed with a manikin and an identical mattress/backboard/patient configuration. CCs were performed using FDS on the sternum and a reference accelerometer attached to the spine of the manikin, providing a means to Calculate the mattress deflection.
Results: Twelve CPR events with 14,487 CC (11 patients, median age 14.9 years) were recorded and reconstructed: 9 on ICU beds (9296 CC), 3 on stretchers (5191 CC). Measured mean CC depth during CPR was 47 +/- 8 mm on ICU beds, and 45 +/- 7 mm on stretcher beds with overestimation of 13 +/- 4 mm and 4 +/- 1 mm, respectively, due to mattress compression. After adjusting for this, the proportion of CC that met the CPR guidelines decreased from 88.4 to 31.8% on ICU beds (p < 0.001), and 86.3 to 64.7% on stretcher (p < 0.001 The proportion of appropriate depth CC was significantly smaller on ICU beds (p < 0.001).
Conclusion: CC conducted on a non-rigid surface may not be deep enough. FDS may overestimate CC depth by 28% on ICU beds, and 10% on stretcher beds
Repeated Traumatic Brain Injury Affects Composite Cognitive Function in Piglets
Cumulative effects of repetitive mild head injury in the pediatric population are unknown. We have developed a cognitive composite dysfunction score that correlates white matter injury severity in neonatal piglets with neurobehavioral assessments of executive function, memory, learning, and problem solving. Anesthetized 3- to 5-day-old piglets were subjected to single (n = 7), double one day apart (n = 7), and double one week apart (n = 7) moderate (190 rad/s) rapid non-impact axial rotations of the head and compared to instrumented shams (n = 7). Animals experiencing two head rotations one day apart had a significantly higher mortality rate (43%) compared to the other groups and had higher failures rates in visual-based problem solving compared to instrumented shams. White matter injury, assessed by β-APP staining, was significantly higher in the double one week apart group compared to that with single injury and sham. Worsening performance on cognitive composite score correlated well with increasing severity of white matter axonal injury. In our immature large animal model of TBI, two head rotations produced poorer outcome as assessed by neuropathology and neurobehavioral functional outcomes compared to that with single rotations. More importantly, we have observed an increase in injury severity and mortality when the head rotations occur 24 h apart compared to 7 days apart. These observations have important clinical translation to infants subjected to repeated inflicted head trauma
Evaluating processes of care and outcomes of children in hospital (EPOCH): study protocol for a randomized controlled trial
Abstract
Background
The prevention of near and actual cardiopulmonary arrest in hospitalized children is a patient safety imperative. Prevention is contingent upon the timely identification, referral and treatment of children who are deteriorating clinically. We designed and validated a documentation-based system of care to permit identification and referral as well as facilitate provision of timely treatment. We called it the Bedside Paediatric Early Warning System (BedsidePEWS). Here we describe the rationale for the design, intervention and outcomes of the study entitled Evaluating Processes and Outcomes of Children in Hospital (EPOCH).
Methods/Design
EPOCH is a cluster-randomized trial of the BedsidePEWS. The unit of randomization is the participating hospital. Eligible hospitals have a Pediatric Intensive Care Unit (PICU), are anticipated to have organizational stability throughout the study, are not using a severity of illness score in hospital wards and are willing to be randomized. Patients are >37 weeks gestational age and <18 years and are hospitalized in inpatient ward areas during all or part of their hospital admission.
Randomization is to either BedsidePEWS or control (no severity of illness score) in a 1:1 ratio within two strata (<200, ≥200 hospital beds). All-cause hospital mortality is the selected primary outcome. It is objective, independent of do-not-resuscitate status and can be reliably measured. The secondary outcomes include (1) clinical outcomes: clinical deterioration, severity of illness at and during ICU admission, and potentially preventable cardiac arrest; (2) processes of care outcomes: immediate calls for assistance, hospital and ICU readmission, and perceptions of healthcare professionals; and (3) resource utilization: ICU days and use of ICU therapies.
Discussion
Following funding by the Canadian Institutes of Health Research and local ethical approvals, site enrollment started in 2010 and was closed in February 2014. Patient enrollment is anticipated to be complete in July 2015. The results of EPOCH will strengthen the scientific basis for local, regional, provincial and national decision-making and for the recommendations of national and international bodies. If negative, the costs of hospital-wide implementation can be avoided. If positive, EPOCH will have provided a scientific justification for the major system-level changes required for implementation.
Trial registration:
NCT01260831
ClinicalTrials.gov date: 14 December 2010
Evaluating processes of care and outcomes of children in hospital (EPOCH): study protocol for a randomized controlled trial
The prevention of near and actual cardiopulmonary arrest in hospitalized children is a patient safety imperative. Prevention is contingent upon the timely identification, referral and treatment of children who are deteriorating clinically. We designed and validated a documentation-based system of care to permit identification and referral as well as facilitate provision of timely treatment. We called it the Bedside Paediatric Early Warning System (BedsidePEWS). Here we describe the rationale for the design, intervention and outcomes of the study entitled Evaluating Processes and Outcomes of Children in Hospital (EPOCH)