22 research outputs found

    Effects of different leukocyte subpopulations and flow conditions on leukocyte accumulation during reperfusion

    Get PDF
    Background/Aims: The study examined the interdependent effects of shear stress and different leukocyte subpopulations on endothelial cell activation and cell interactions during low flow and reperfusion. Methods: Human umbilical venous endothelial cells were perfused with either neutrophils or monocytes at different shear stress (2-0.25 dyn/cm 2) and adhesion was quantified by microscopy. Effects of adherent neutrophils and monocytes on endothelial cell adhesion molecule expression were analyzed by flow cytometry after 4-hour static coincubation. After coincubation, the cocultures were reperfused with labeled neutrophils at 2 dyn/cm 2 and their adhesion was quantified selectively. For the control, endothelium monocultures with and without lipopolysaccharide activation were used. Results: At 2 dyn/cm 2, adhesion did not exceed baseline levels on nonactivated endothelium. Decreasing shear stress to 0.25 dyn/cm 2 largely increased the adhesion of both leukocyte subpopulations, similar to the effect of lipopolysaccharide at 2 dyn/cm 2. However, only adherent monocytes increased adhesion molecule expression, whereas neutrophils had no effect. As a functional consequence, adherent monocytes largely increased neutrophil adhesion during reperfusion, whereas adherent neutrophils did not. Conclusion: Compromised shear stress is an autonomous trigger of leukocyte adhesion even in the absence of additional activators. Exceeding this immediate effect, adherent monocytes induce further endothelial activation and enhance further neutrophil adhesion during reperfusion. Copyrigh

    Oxygen-Independent Stabilization of Hypoxia Inducible Factor (HIF)-1 during RSV Infection

    Get PDF
    BACKGROUND: Hypoxia-inducible factor 1 (HIF)-1alpha is a transcription factor that functions as master regulator of mammalian oxygen homeostasis. In addition, recent studies identified a role for HIF-1alpha as transcriptional regulator during inflammation or infection. Based on studies showing that respiratory syncytial virus (RSV) is among the most potent biological stimuli to induce an inflammatory milieu, we hypothesized a role of HIF-1alpha as transcriptional regulator during infections with RSV. METHODOLOGY, PRINCIPAL FINDINGS: We gained first insight from immunohistocemical studies of RSV-infected human pulmonary epithelia that were stained for HIF-1alpha. These studies revealed that RSV-positive cells also stained for HIF-1alpha, suggesting concomitant HIF-activation during RSV infection. Similarly, Western blot analysis confirmed an approximately 8-fold increase in HIF-1alpha protein 24 h after RSV infection. In contrast, HIF-1alpha activation was abolished utilizing UV-treated RSV. Moreover, HIF-alpha-regulated genes (VEGF, CD73, FN-1, COX-2) were induced with RSV infection of wild-type cells. In contrast, HIF-1alpha dependent gene induction was abolished in pulmonary epithelia following siRNA mediated repression of HIF-1alpha. Measurements of the partial pressure of oxygen in the supernatants of RSV infected epithelia or controls revealed no differences in oxygen content, suggesting that HIF-1alpha activation is not caused by RSV associated hypoxia. Finally, studies of RSV pneumonitis in mice confirmed HIF-alpha-activation in a murine in vivo model. CONCLUSIONS/SIGNIFICANCE: Taking together, these studies suggest hypoxia-independent activation of HIF-1alpha during infection with RSV in vitro and in vivo

    Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study.

    Get PDF
    INTRODUCTION: Several common breast cancer genetic susceptibility variants have recently been identified. We aimed to determine how these variants combine with a subset of other known risk factors to influence breast cancer risk in white women of European ancestry using case-control studies participating in the Breast Cancer Association Consortium. METHODS: We evaluated two-way interactions between each of age at menarche, ever having had a live birth, number of live births, age at first birth and body mass index (BMI) and each of 12 single nucleotide polymorphisms (SNPs) (10q26-rs2981582 (FGFR2), 8q24-rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312 (MAP3K1), 16q12-rs3803662 (TOX3), 2q35-rs13387042, 5p12-rs10941679 (MRPS30), 17q23-rs6504950 (COX11), 3p24-rs4973768 (SLC4A7), CASP8-rs17468277, TGFB1-rs1982073 and ESR1-rs3020314). Interactions were tested for by fitting logistic regression models including per-allele and linear trend main effects for SNPs and risk factors, respectively, and single-parameter interaction terms for linear departure from independent multiplicative effects. RESULTS: These analyses were applied to data for up to 26,349 invasive breast cancer cases and up to 32,208 controls from 21 case-control studies. No statistical evidence of interaction was observed beyond that expected by chance. Analyses were repeated using data from 11 population-based studies, and results were very similar. CONCLUSIONS: The relative risks for breast cancer associated with the common susceptibility variants identified to date do not appear to vary across women with different reproductive histories or body mass index (BMI). The assumption of multiplicative combined effects for these established genetic and other risk factors in risk prediction models appears justified.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Intravenous immunoglobulin fails to improve ARDS in patients undergoing ECMO therapy

    No full text
    Abstract Background Acute respiratory distress syndrome (ARDS) is associated with high mortality rates. ARDS patients suffer from severe hypoxemia, and extracorporeal membrane oxygenation (ECMO) therapy may be necessary to ensure oxygenation. ARDS has various etiologies, including trauma, ischemia-reperfusion injury or infections of various origins, and the associated immunological responses may vary. To support the immunological response in this patient collective, we used intravenous IgM immunoglobulin therapy to enhance the likelihood of pulmonary recovery. Methods ARDS patients admitted to the intensive care unit (ICU) who were placed on ECMO and treated with (IVIG group; n = 29) or without (control group; n = 28) intravenous IgM-enriched immunoglobulins for 3 days in the initial stages of ARDS were analyzed retrospectively. Results The baseline characteristics did not differ between the groups, although the IVIG group showed a significantly reduced oxygenation index compared to the control group. We found no differences in the length of ICU stay or ventilation parameters. We did not find a significant difference between the groups for the extent of inflammation or for overall survival. Conclusion We conclude that administration of IgM-enriched immunoglobulins as an additional therapy did not have a beneficial effect in patients with severe ARDS requiring ECMO support. Trial registration Clinical Trials: NCT02961166; retrospectively registered

    Early Driving Pressure Changes Predict Outcomes during Venovenous Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome

    No full text
    Background. Extracorporeal membrane oxygenation (ECMO) serves as a rescue therapy when systemic hypoxia persists despite conventional care for severe acute respiratory distress syndrome (ARDS). Due to the extracorporeal gas exchange, the paO2/FiO2 ratio cannot be used as the primary marker for disease severity and progression. Therefore, we performed a propensity score-matched analysis to identify other potential predictors of outcomes in patients supported by ECMO therapy. Results. Between December 2014 and May 2018, 105 patients underwent venovenous ECMO in our institution. From these patients, we identified 28 who died during ECMO therapy and assigned 28 control patients using propensity score matching based on the following criteria: age, ARDS severity, and SAPSII score at admission. A statistical evaluation of the patient characteristics, intensive care data, morbidities, respiratory system variables, and outcomes was performed. The baseline patient characteristics did not differ between groups and ECMO was placed on day 1 in all patients. The analyzed variables of respiratory mechanics, such as the plateau pressure, positive end-expiratory pressure, and tidal volume, did not differ between groups. The driving pressure before ECMO was equal between the nonsurvivors and the controls. Twelve hours after initiation of ECMO therapy, the driving pressure decreased by 40.8% in the survivors but by only 20.1% in the nonsurvivors. Conclusions. We report that very early driving pressure changes can serve as an indicator of disease severity and predict patient survival following ECMO therapy

    Early vvECMO implantation may be associated with lower mortality in ARDS

    No full text
    Abstract Background Venovenous extracorporeal membrane oxygenation (vvECMO) is used to treat hypoxia in patients with severe acute respiratory distress syndrome (ARDS). Nevertheless, uncertainty exists regarding the optimal timing of initiation of vvECMO therapy. We aimed to investigate the association between number of days of invasive mechanical ventilation (IMV) prior to vvECMO implantation and mortality. Methods In this retrospective observational study, we included patients treated at an academic intensive care unit with vvECMO for severe ARDS. The primary outcome was all-cause 28-day mortality. We conducted a multivariate logistic regression analysis to estimate the association between number of days of IMV prior to vvECMO implantation and mortality after adjustment for confounders. Results Out of 274 patients who underwent ECMO for severe ARDS, 158 patients (median age: 58 years) with relevant data were included in the analysis. The mean duration of IMV prior to vvECMO was significantly shorter in survivors than in nonsurvivors [survivors median: 1; interquartile range: 1–3; non-survivors median 4; interquartile range: 1–5.75; p = 0.0001). Logistic regression showed an association between the duration of ventilation prior to vvECMO and patient mortality. The odds ratio for the all-cause 28-day mortality and in-hospital mortality was significantly reduced in patients who received vvECMO within the first 5 days of IMV. Conclusions Early vvECMO implantation may be associated with lower mortality in ARDS

    IÎșB Kinase Is a Critical Regulator of Chemokine Expression and Lung Inflammation in Respiratory Syncytial Virus Infection

    No full text
    Respiratory syncytial virus (RSV) is the major etiologic agent of severe epidemic lower respiratory tract infections in infancy. Airway mucosal inflammation plays a critical role in the pathogenesis of RSV disease in both natural and experimental infections. RSV is among the most potent biological stimuli that induce the expression of inflammatory genes, including those encoding chemokines, but the mechanism(s) that controls virus-mediated airway inflammation in vivo has not been fully elucidated. Herein we show that the inoculation of BALB/c mice with RSV results in rapid activation of the multisubunit IÎșB kinase (IKK) in lung tissue. IKK transduces upstream activating signals into the rate-limiting phosphorylation (and proteolytic degradation) of IÎșBα, the inhibitory subunit that under normal conditions binds to the nuclear factor (NF)-ÎșB complex and keeps it in an inactive cytoplasmic form. Mice treated intranasally with interleukin-10 or with a specific cell-permeable peptide that blocks the association of the catalytic subunit IKKÎČ with the regulatory protein NEMO showed a striking reduction of lung NF-ÎșB DNA binding activity, chemokine gene expression, and airway inflammation in response to RSV infection. These findings suggest that IKKÎČ may be a potential target for the treatment of acute or chronic inflammatory diseases of the lung
    corecore