15 research outputs found

    Internal convective cooling systems for hypersonic aircraft

    Get PDF
    Parametric studies were conducted to investigate the relative merits of construction materials, coolants, and cooled panel concepts for internal convective cooling systems applied to airframe structures of hydrogen-fueled hypersonic aircraft. These parametric studies were then used as a means of comparing various cooled structural arrangements for a hypersonic transport and a hypersonic research airplane. The cooled airplane studies emphasized weight aspects as related to the choice of materials, structural arrangements, structural temperatures, and matching of the cooling system heat load to the available hydrogen fuel-flow heat sink. Consideration was given to reliability and to fatigue and fracture aspects, as well. Even when auxiliary thermal protection system items such as heat shielding, insulation, and excess hydrogen for cooling are considered the more attractive actively cooled airframe concepts indicated potential payload increases of from 40 percent to over 100 percent for the hypersonic transport as compared to the results of previous studies of the same vehicle configuration with an uncooled airframe

    Data and results from a study of internal convective cooling systems for hypersonic aircraft

    Get PDF
    An extensive survey of current and future airframe construction materials and coolants was conducted, so that the most promising candidates could be examined for cooled-panel, cooling-system and airframe concepts. Consideration was given to over 100 structural materials, 50 coolants, 6 classes of structural panel concepts, 4 classes of thermal panel concepts with numerous variations, and 3 overall cooled airframe design approaches, including unshielded, shielded, and dual temperature types. The concept identification and parametric comparison phase examined all major elements of the convectively cooled airframe, including the differing requirements at various locations on the aircraft. The parametric results were used for the investigation to two separate vehicles, a hypersonic transport with a length of 96 meters (314 feet) and a weight of 24,000 kg (528,600 lb) and a hypersonic research airplane, with a length of 25m (80 ft) and a weight of 20,300 kg (447,000 lb)

    External and Turbomachinery Flow Control Working Group

    Get PDF
    Broad Flow Control Issues: a) Understanding flow physics. b) Specific control objective(s). c) Actuation. d) Sensors. e) Integrated active flow control system. f) Development of design tools (CFD, reduced order models, controller design, understanding and utilizing instabilities and other mechanisms, e.g., streamwise vorticity)

    Comment on 'Film reinforced multifastened mechanical joints in fibrous composites.'

    No full text

    Acknowledgement to reviewers of fluids in 2018

    Get PDF
    corecore