96 research outputs found

    a previously undescribed entity

    Get PDF
    Background: There are few studies describing periodic limb movement syndrome (PLMS) in rapid eye movement (REM) sleep in patients with narcolepsy, restless legs syndrome, REM sleep behavior disorder, and spinal cord injury, and to a lesser extent, in insomnia patients and healthy controls, but no published cases in multiple sclerosis (MS). The aim of this study was to investigate PLMS in REM sleep in MS and to analyze whether it is associated with age, sex, disability, and laboratory findings. Methods: From a study of MS patients originally published in 2011, we retrospectively analyzed periodic limb movements (PLMs) during REM sleep by classifying patients into two subgroups: PLM during REM sleep greater than or equal to ten per hour of REM sleep (n=7) vs less than ten per hour of REM sleep (n=59). A univariate analysis between PLM and disability, age, sex, laboratory findings, and polysomnographic data was performed. Results: MS patients with more than ten PLMs per hour of REM sleep showed a significantly higher disability measured by the Kurtzke expanded disability status scale (EDSS) (P=0.023). The presence of more than ten PLMs per hour of REM sleep was associated with a greater likelihood of disability (odds ratio 22.1; 95% confidence interval 3.5–139.7; P<0.0001), whereas there were no differences in laboratory and other polysomnographic findings. Conclusion: PLMs during REM sleep were not described in MS earlier, and they are associated with disability measured by the EDSS

    Drug reaction with eosinophilia and systemic symptoms after daclizumab therapy in MS

    Get PDF
    Currently, 12 cases (including our patient) of autoimmune encephalitis/encephalopathy after daclizumab therapy in MS are known worldwide and led to voluntary withdrawal of marketing authorization for daclizumab by the manufacturer Biogen (press release from European Medicines Agency, 07.03.2018). Our findings suggest that early recognition of DRESS even with CNS manifestations and swift treatment with steroids and/or plasma exchange are essential to improve the longterm outcome

    Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE

    Get PDF
    Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET–FLIM, providing a possible mechanism of disease progression in MS

    Dimethylethanolamine Decreases Epileptiform Activity in Acute Human Hippocampal Slices in vitro

    Get PDF
    Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy with about 30% of patients developing pharmacoresistance. These patients continue to suffer from seizures despite polytherapy with antiepileptic drugs (AEDs) and have an increased risk for premature death, thus requiring further efforts for the development of new antiepileptic therapies. The molecule dimethylethanolamine (DMEA) has been tested as a potential treatment in various neurological diseases, albeit the functional mechanism of action was never fully understood. In this study, we investigated the effects of DMEA on neuronal activity in single-cell recordings of primary neuronal cultures. DMEA decreased the frequency of spontaneous synaptic events in a concentration-dependent manner with no apparent effect on resting membrane potential (RMP) or action potential (AP) threshold. We further tested whether DMEA can exert antiepileptic effects in human brain tissue ex vivo. We analyzed the effect of DMEA on epileptiform activity in the CA1 region of the resected hippocampus of TLE patients in vitro by recording extracellular field potentials in the pyramidal cell layer. Epileptiform burst activity in resected hippocampal tissue from TLE patients remained stable over several hours and was pharmacologically suppressed by lacosamide, demonstrating the applicability of our platform to test antiepileptic efficacy. Similar to lacosamide, DMEA also suppressed epileptiform activity in the majority of samples, albeit with variable interindividual effects. In conclusion, DMEA might present a new approach for treatment in pharmacoresistant TLE and further studies will be required to identify its exact mechanism of action and the involved molecular targets

    Drug reaction with eosinophilia and systemic symptoms after daclizumab therapy in MS

    Get PDF
    Currently, 12 cases (including our patient) of autoimmune encephalitis/encephalopathy after daclizumab therapy in MS are known worldwide and led to voluntary withdrawal of marketing authorization for daclizumab by the manufacturer Biogen (press release from European Medicines Agency, 07.03.2018). Our findings suggest that early recognition of DRESS even with CNS manifestations and swift treatment with steroids and/or plasma exchange are essential to improve the longterm outcome

    Low-Density Granulocytes Are a Novel Immunopathological Feature in Both Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder

    Get PDF
    Objective: To investigate whether low-density granulocytes (LDGs) are an immunophenotypic feature of patients with multiple sclerosis (MS) or neuromyelitis optica spectrum disorder (NMOSD). Methods: Blood samples were collected from 20 patients with NMOSD and 17 patients with MS, as well as from 15 patients with Systemic Lupus Erythematosus (SLE) and 23 Healthy Donors (HD). We isolated peripheral blood mononuclear cells (PBMCs) with density gradient separation and stained the cells with antibodies against CD14, CD15, CD16, and CD45, and analyzed the cells by flow cytometry or imaging flow cytometry. We defined LDGs as CD14-CD15(high) and calculated their share in total PBMC leukocytes (CD45+) as well as the share of CD16(hi) LDGs. Clinical data on disease course, medication, and antibody status were obtained. Results: LDGs were significantly more common in MS and NMOSD than in HDs, comparable to SLE samples (median values HD 0.2%, MS 0.9%, NMOSD 2.1%, SLE 4.3%). 0/23 of the HDs, but 17/20 NMOSD and 11/17 MS samples as well as 13/15 SLE samples had at least 0.7 % LDGs. NMOSD patients without continuous immunosuppressive treatment had significantly more LDGs compared to their treated counterparts. LDG nuclear morphology ranged from segmented to rounded, suggesting a heterogeneity within the group. Conclusion: LDGs are a feature of the immunophenotype in some patients with MS and NMOSD

    In vivo imaging of lymphocytes in the CNS reveals different behaviour of naïve T cells in health and autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-photon laser scanning microscopy (TPLSM) has become a powerful tool in the visualization of immune cell dynamics and cellular communication within the complex biological networks of the inflamed central nervous system (CNS). Whereas many previous studies mainly focused on the role of effector or effector memory T cells, the role of naïve T cells as possible key players in immune regulation directly in the CNS is still highly debated.</p> <p>Methods</p> <p>We applied <it>ex vivo </it>and intravital TPLSM to investigate migratory pathways of naïve T cells in the inflamed and non-inflamed CNS. MACS-sorted naïve CD4+ T cells were either applied on healthy CNS slices or intravenously injected into RAG1 -/- mice, which were affected by experimental autoimmune encephalomyelitis (EAE). We further checked for the generation of second harmonic generation (SHG) signals produced by extracellular matrix (ECM) structures.</p> <p>Results</p> <p>By applying TPLSM on living brain slices we could show that the migratory capacity of activated CD4+ T cells is not strongly influenced by antigen specificity and is independent of regulatory or effector T cell phenotype. Naïve T cells, however, cannot find sufficient migratory signals in healthy, non-inflamed CNS parenchyma since they only showed stationary behaviour in this context. This is in contrast to the high motility of naïve CD4+ T cells in lymphoid organs. We observed a highly motile migration pattern for naïve T cells as compared to effector CD4+ T cells in inflamed brain tissue of living EAE-affected mice. Interestingly, in the inflamed CNS we could detect reticular structures by their SHG signal which partially co-localises with naïve CD4+ T cell tracks.</p> <p>Conclusions</p> <p>The activation status rather than antigen specificity or regulatory phenotype is the central requirement for CD4+ T cell migration within healthy CNS tissue. However, under inflammatory conditions naïve CD4+ T cells can get access to CNS parenchyma and partially migrate along inflammation-induced extracellular SHG structures, which are similar to those seen in lymphoid organs. These SHG structures apparently provide essential migratory signals for naïve CD4+ T cells within the diseased CNS.</p

    COVID-19: a fatal case of acute liver failure associated with SARS-CoV-2 infection in pre-existing liver cirrhosis

    Get PDF
    Background: The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is challenging, particularly in post-mortem human tissues. However, there is increasing evidence for viral SARS-CoV-2 manifestation in non-respiratory tissues. In this context, it is a current matter of debate, whether SARS-CoV-2 shows hepatotropism. Case presentation: Here, we report a case of an 88-year-old women with massive SARS-CoV-2 viremia, severe jaundice and clinical signs of an acute hepatitis, who died within a few days from an acute liver failure without showing any clinical signs of pneumonia. Autopsy revealed a severe chronic and acute liver damage with bile duct infestation by SARS-CoV-2 that was accompanied by higher expressions of angiotensin-converting enzyme-2 (ACE2), Cathepsin L and transmembrane serine protease 2 (TMPRSS2). Conclusion: Our findings indicate an enhanced biliary susceptibility to viral infection with SARS-CoV-2, that might have resulted from pre-existing severe liver damage. Furthermore, our findings emphasize the differential diagnosis of coronavirus disease 2019 (COVID-19)-associated liver failure in the clinical setting of an inexplicable jaundice

    Successful plasmapheresis and immunoglobulin treatment for severe lipid storage myopathy: Doing the right thing for the wrong reason

    Get PDF
    Three consecutive skeletal muscle biopsies during a several months time-frame, showing different degrees of neutral lipid storage. This is highlighted by Oil-red-O stains (D, E, F) and electron microscopy (G, H, I). Note the impact on mitochondrial morphology with so called 'parking lots (K, L). Zooming 'in and out' into the ultrastructure, using the nanotomy platform provides interesting detailled information (http://nanotomy.org). ​

    SIGLEC1 (CD169): a marker of active neuroinflammation in the brain but not in the blood of multiple sclerosis patients

    Get PDF
    We aimed to evaluate SIGLEC1 (CD169) as a biomarker in multiple sclerosis (MS) and Neuromyelitis optica spectrum disorder (NMOSD) and to evaluate the presence of SIGLEC1(+) myeloid cells in demyelinating diseases. We performed flow cytometry-based measurements of SIGLEC1 expression on monocytes in 86 MS patients, 41 NMOSD patients and 31 healthy controls. Additionally, we histologically evaluated the presence of SIGLEC1(+) myeloid cells in acute and chronic MS brain lesions as well as other neurological diseases. We found elevated SIGLEC1 expression in 16/86 (18.6%) MS patients and 4/41 (9.8%) NMOSD patients. Almost all MS patients with high SIGLEC1 levels received exogenous interferon beta as an immunomodulatory treatment and only a small fraction of MS patients without interferon treatment had increased SIGLEC1 expression. In our cohort, SIGLEC1 expression on monocytes was-apart from those patients receiving interferon treatment-not significantly increased in patients with MS and NMOSD, nor were levels associated with more severe disease. SIGLEC1(+) myeloid cells were abundantly present in active MS lesions as well as in a range of acute infectious and malignant diseases of the central nervous system, but not chronic MS lesions. The presence of SIGLEC1(+) myeloid cells in brain lesions could be used to investigate the activity in an inflammatory CNS lesion
    corecore