2 research outputs found

    The HDAC Inhibitor FK228 Enhances Adenoviral Transgene Expression by a Transduction-Independent Mechanism but Does Not Increase Adenovirus Replication

    Get PDF
    The histone deacetylase inhibitor FK228 has previously been shown to enhance adenoviral transgene expression when cells are pre-incubated with the drug. Upregulation of the coxsackie adenovirus receptor (CAR), leading to increased viral transduction, has been proposed as the main mechanism. In the present study, we found that the highest increase in transgene expression was achieved when non-toxic concentrations of FK228 were added immediately after transduction, demonstrating that the main effect by which FK228 enhances transgene expression is transduction-independent. FK228 had positive effects both on Ad5 and Ad5/f35 vectors with a variety of transgenes and promoters, indicating that FK228 works mainly by increasing transgene expression at the transcriptional level. In some cases, the effects were dramatic, as demonstrated by an increase in CD40L expression by FK228 from 0.3% to 62% when the murine prostate cancer cell line TRAMP-C2 was transduced with Ad[CD40L]. One unexpected finding was that FK228 decreased the transgene expression of an adenoviral vector with the prostate cell-specific PPT promoter in the human prostate adenocarcinoma cell lines LNCaP and PC-346C. This is probably a consequence of alteration of the adenocarcinoma cell lines towards a neuroendocrine differentiation after FK228 treatment. The observations in this study indicate that FK228 enhances adenoviral therapy by a transduction-independent mechanism. Furthermore, since histone deacetylase inhibitors may affect the differentiation of cells, it is important to keep in mind that the activity and specificity of tissue- and tumor-specific promoters may also be affected

    Adenovirus-mediated CD40 Ligand Immunotherapy of Prostate and Bladder Cancer

    No full text
    Cancer immunotherapy aims at reversing the immunosuppressive tumor environment and enhancing anti-tumor immunity. This thesis comprises studies on murine models for prostate (TRAMP-C2) and bladder (MB49) cancer with the aim to explore if the introduction of an adenoviral vector expressing CD40 ligand (AdCD40L) can induce anti-tumor immune responses. We show in subcutaneous mouse models that AdCD40L treatment suppresses tumor growth. Bladder cancer is known to secrete immunosuppressive IL-10 which may inhibit T cell function. We show that introducing AdCD40L into mouse bladder tumors inhibits IL-10 production and reverses immunosuppression. AdCD40L-transduced mouse prostate cancer cells showed caspase activation and reduced cell viability. Vaccination with CD40L-modified prostate cancer cells induces anti-tumor responses and protects mice against rechallenge with native TRAMP-C2 cells. In order to enhance AdCD40L therapy, we explored the possibility of combining it with the histone deacetylase inhibitor FK228, also known as depsipeptide. We show that FK228 upregulates coxsackie and adenovirus receptor expression and thereby enhances adenoviral-mediated CD40L expression in both murine and human prostate cancer cells. Increasing amounts of FK228 or AdCD40L reduces prostate cancer cell viability, while the combined treatment gives at least an additive therapeutic effect. Moreover, we show that AdCD40L transduction of prostate cancer cells induces endogenous CD40 expression and sensitize them for CD40L-mediated therapy. In order to conduct prostate-specific gene therapy, prostate-specific promoters can be used to drive transgene expression. However, there are no reports on prostate-specific promoters that are transcriptionally active in mouse cells. Here we show that by using the two-step transcription activation system (TSTA), we can enhance the activity of a recombinant human promoter sequence and obtain activity in mouse prostate cancer cells as well. This finding paves the way for future studies of prostate-specific gene therapy in immunocompetent mouse models
    corecore