16 research outputs found

    COVID-19 vaccination produces exercise-responsive SARS-CoV-2-specific T-cells regardless of infection history

    Get PDF
    Purpose: The mobilization and redistribution of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) specific T-cells and neutralizing antibodies during exercise is purported to increase immune surveillance and protect against severe coronavirus disease 2019 (COVID-19). We sought to determine if COVID-19 vaccination would elicit exercise-responsive SARS-CoV-2 T-cells and transiently alter neutralizing antibody titers. Methods: 18 healthy participants completed a 20 min bout of graded cycling exercise before and/or after receiving a COVID-19 vaccine. All major leukocyte subtypes were enumerated before, during, and after exercise by flow cytometry, and immune responses to SARS CoV-2 were determined using whole blood peptide stimulation assays, T-cell receptor (TCR) sequencing, and SARS-CoV-2 neutralizing antibody serology. Results: COVID-19 vaccination had no effect on the mobilization or egress of major leukocyte subsets in response to intensity-controlled graded exercise. However, noninfected participants had a significantly reduced mobilization of CD4+ and CD8+ naive T-cells, as well as CD4+ central memory T-cells, after vaccination (synthetic immunity group); this was not seen after vaccination in those with prior SARS CoV-2 infection (hybrid immunity group). Acute exercise after vaccination robustly mobilized SARSCoV-2 specific T-cells to blood in an intensity-dependent manner. Both groups mobilized T-cells that reacted to spike protein; however, only the hybrid immunity group mobilized T-cells that reacted to membrane and nucleocapsid antigens. Neutralizing antibodies increased significantly during exercise only in the hybrid immunity group. Conclusion: These data indicate that acute exercise mobilizes SARS CoV-2-specific Tcells that recognize spike protein and increases the redistribution of neutralizing antibodies in individuals with hybrid immunity

    Human lymphocytes mobilized with exercise have an anti-tumor transcriptomic profile and exert enhanced graft-versus-leukemia effects in xenogeneic mice

    Get PDF
    BackgroundEvery bout of exercise mobilizes and redistributes large numbers of effector lymphocytes with a cytotoxic and tissue migration phenotype. The frequent redistribution of these cells is purported to increase immune surveillance and play a mechanistic role in reducing cancer risk and slowing tumor progression in physically active cancer survivors. Our aim was to provide the first detailed single cell transcriptomic analysis of exercise-mobilized lymphocytes and test their effectiveness as a donor lymphocyte infusion (DLI) in xenogeneic mice engrafted with human leukemia.MethodsPeripheral blood mononuclear cells (PBMCs) were collected from healthy volunteers at rest and at the end of an acute bout of cycling exercise. Flow cytometry and single-cell RNA sequencing was performed to identify phenotypic and transcriptomic differences between resting and exercise-mobilized cells using a targeted gene expression panel curated for human immunology. PBMCs were injected into the tail vein of xenogeneic NSG-IL-15 mice and subsequently challenged with a luciferase tagged chronic myelogenous leukemia cell line (K562). Tumor growth (bioluminescence) and xenogeneic graft-versus-host disease (GvHD) were monitored bi-weekly for 40-days.ResultsExercise preferentially mobilized NK-cell, CD8+ T-cell and monocyte subtypes with a differentiated and effector phenotype, without significantly mobilizing CD4+ regulatory T-cells. Mobilized effector lymphocytes, particularly effector-memory CD8+ T-cells and NK-cells, displayed differentially expressed genes and enriched gene sets associated with anti-tumor activity, including cytotoxicity, migration/chemotaxis, antigen binding, cytokine responsiveness and alloreactivity (e.g. graft-versus-host/leukemia). Mice receiving exercise-mobilized PBMCs had lower tumor burden and higher overall survival (4.14E+08 photons/s and 47%, respectively) at day 40 compared to mice receiving resting PBMCs (12.1E+08 photons/s and 22%, respectively) from the same donors (p<0.05). Human immune cell engraftment was similar for resting and exercise-mobilized DLI. However, when compared to non-tumor bearing mice, K562 increased the expansion of NK-cell and CD3+/CD4-/CD8- T-cells in mice receiving exercise-mobilized but not resting lymphocytes, 1-2 weeks after DLI. No differences in GvHD or GvHD-free survival was observed between groups either with or without K562 challenge.ConclusionExercise in humans mobilizes effector lymphocytes with an anti-tumor transcriptomic profile and their use as DLI extends survival and enhances the graft-versus-leukemia (GvL) effect without exacerbating GvHD in human leukemia bearing xenogeneic mice. Exercise may serve as an effective and economical adjuvant to increase the GvL effects of allogeneic cell therapies without intensifying GvHD

    The effects of probiotic supplementation on the immune cells and on upper respiratory tract infection in endurance runners.

    No full text
    A suplementação com probióticos apresenta uma importante capacidade imunomoduladora e surge como uma importante estratégia para tratar doenças autoimunes, doenças crônicas, entre outras. Exercícios prolongados de alta intensidade são conhecidos por diminuir a função da células imunológicas, diminuindo a performance do atleta e prejudicando sua recuperação. Nossa hipótese foi de que 30 dias consecutivos de suplementação com probióticos, antes de uma prova de maratona, seria capaz de modular as células do sistema imunológico e diminuir a incidência de infecções oportunistas. 27 maratonistas do sexo masculino foram randomizados de maneira duplo-cega em dois grupos, probiótico e placebo. Os atletas do grupo probiótico receberam 30 saches contendo Bifidobacterium-animalis-subsp.-Lactis (10x10 9) e Lactobacillus-Acidophilus (10x109) + 5 gramas de maltodextrina; os do grupo placebo receberam 30 saches do mesmo peso, cor e sabor, contendo 5 gramas de maltodextrina; eles consumiram 1 sache por dia até o dia da maratona. Foi coletado sangue antes do início da suplementação (basal), um dia antes da corrida (pré), uma hora após a corrida (pós) e 5 dias após a corrida (recuperação). O grupo suplementado com probiótico manteve a população total de linfócitos T CD8+ após a prova, bem como as subpopulações de memória efetora. O probiótico também foi capaz de modular a resposta dos linfócitos ao estímulo. O treinamento e a maratona foram capazes de modular uma subpopulação de linfócitos T duplo negativo (CD3+CD4-CD8-) independente da suplementação. Nenhuma diferença estatística foi encontrada entre os grupos em relação a incidência e severidade dos sintomas associados a infecções do trato respiratório superior.Probiotic supplementation arises as playing an immune-stimulatory role. High-intensity and -volume exercise can inhibit immune cell function, which threatens athletic performance and recovery. We hypothesized that 30 days of probiotic supplementation could stabilize the immune system of athletes preventing immune suppression after a marathon race. Twenty-seven male marathonists were double-blinded randomly into probiotic (Bifidobacterium-animalis-subsp.-Lactis (10x10 9) and Lactobacillus-Acidophilus (10x109) + 5 grams of maltodextrin) and placebo (5 grams of maltodextrin) group. They received 30 sachets and supplemented 1 portion/day during 30 days before the race. Blood was collected 30 days before (rest), 1 day before (pre), 1 hour after (post) and 5 days after the race (recovery). Both chronic and acute exercise modulated a different T lymphocyte population (CD3+CD4-CD8- T-cells), increasing pre-race, decreasing post, and returning to rest values at the recovery. The total number of CD8 T cell and the memory subsets statistically decreased only in the placebo group post-race. Pro-inflammatory cytokine production by stimulated lymphocytes decreased in the probiotic group after the supplementation period. 30 days of probiotic supplementation maintained CD8 T cell and effector memory cell population and played an immunomodulatory role in stimulated lymphocytes. Both, training, and marathon modulated a non-classical lymphocyte population regardless of probiotic supplementation

    Aerobic Exercise decreases NAFLD, but promotes liver inflammation in PPAR-alpha knockout mice via PPAR-gamma inhibition.

    No full text
    A NAFLD Ă© uma das principais patologias de fĂ­gado. Estudos reportam o exercĂ­cio fĂ­sico como um dos principais alvos terapĂŞuticos para esta doença. Verificamos se o treinamento melhora a resistĂŞncia Ă  insulina, inflamação e esteatose hepática causados pela dieta hiperlipĂ­dica (HF) e se o PPAR-alpha está envolvido neste processo. Animais selvagens C57BL6 (WT) e knockout para PPARα (KO) foram alimentados com dieta padrĂŁo ou HF durante 12 semanas e treinados por 8 semana. Metade dos animais KO treinados receberam rosiglitazona. A dieta HF aumentou TAG hepático, e resistĂŞncia perifĂ©rica Ă  insulina levando a NALFD. O treinamento foi eficiente em reduzir esses parâmetros em ambos genĂłtipos. O desenvolvimento da NAFLD nĂŁo foi associado Ă  inflamação hepática, entretanto animais KO treinados apresentaram uma resposta inflamatĂłria exacerbada, causada pela redução de PPARγ. Quando eles receberam rosi apresentaram melhora no quadro inflamatĂłrio hepático e na resistĂŞncia Ă  insulina. O exercĂ­cio diminuiu os danos causados pela dieta HF independente do PPARα; a ausĂŞncia do PPARα junto com exercĂ­cio leva a queda na expressĂŁo de PPARγ, e a uma resposta inflamatĂłria exacerbada, que Ă© revertida pela administração da rosiglitazona.NAFLD is one of the main liver diseases. Studies have shown the beneficial effects of exercise on reverse NAFLD. We verify whether exercise improve insulin resistance, liver inflammation and steatohepatitis caused by a high fat diet (HF) and whether PPARα is involved in these actions. C57BL6 wild type (WT) and PPAR-α knockout (KO) mice were fed with a standard (SD) or HF during 12 weeks and trained on a treadmill during 8 weeks, half of KO trained animals received 15mg/kg/day of rosiglitazone. HF diet increased TAG in the liver and peripheral insulin resistance leading to NAFLD. Exercise reduced all this parameters in both animals genotype. NAFLD was not associated with inflammation, however KO mice when trained presented an inflammatory response that was caused by a decrease on PPARγ. When these mice were treated with rosiglitazone, they presented decrease on inflammatory cytokines as well as improvement on insulin sensitivity. Exercise improved the damage caused by a HF independently of PPARα and the absence of PPARα together with exercise leads to decrease on PPARγ expression and an inflammatory response, which was attenuated by rosiglitazone administration

    Physical fitness status modulates the inflammatory proteins in peripheral blood and circulating monocytes: role of PPAR-gamma

    No full text
    The aim of this study was to analyze the metabolic and molecular profile according to physical fitness status (Low or High VO2max) and its impacts on peripheral and cellular inflammatory responses in healthy men. First (Phase I), inflammatory profile (TNF-α, IL-6, IL-10) was analyzed at baseline and post-acute exercise sessions performed at low ( 90% VO2max) intensities considering the individual endotoxin concentrations. Next (Phase II), monocyte cell cultures were treated with LPS alone or associated with Rosiglitazone (PPAR-γ agonist drug) to analyze cytokine production and gene expression. Monocyte subsets were also evaluated by flow cytometry. A positive relationship was observed between LPS concentrations and oxygen uptake (VO2max) (r = 0.368; p = 0.007); however, in the post-exercise an inverse correlation was found between LPS variation (Δ%) and VO2max (r = -0.385; p = 0.004). With the low-intensity exercise session, there was inverse correlation between LPS and IL-6 concentrations post-exercise (r = -0.505; p = 0.046) and a positive correlation with IL-10 in the recovery (1 h post) (r = 0.567; p = 0.011), whereas with the high-intensity exercise an inverse correlation was observed with IL-6 at pre-exercise (r = -0.621; p = 0.013) and recovery (r = -0.574; p = 0.016). When monocyte cells were treated with LPS, High VO2max individuals showed higher PPAR-γ gene expression whereas Low VO2max individuals displayed higher IL-10 production. Additionally, higher TLR-4, IKK1, and PGC-1α gene expression were observed in the High VO2max group than Low VO2max individuals. In conclusion, even with elevated endotoxemia, individuals with High VO2max exhibited higher IL-6 concentration in peripheral blood post-acute aerobic exercise and lower IL-10 concentration during recovery (1 h post-exercise). The anti-inflammatory effects linked with exercise training and physical fitness status may be explained by a greater gene expression of IKK1, TLR-4, and PGC-1α, displaying an extremely efficient cellular framework for the PPAR-γ responses

    Recent COVID-19 vaccination has minimal effects on the physiological responses to graded exercise in physically active healthy people

    Get PDF
    Athletes are advised to receive the COVID-19 vaccination to protect them from SARS CoV-2 infection during major competitions. Despite this, many athletes are reluctant to get the COVID-19 vaccine due to concerns that symptoms of vaccinosis may impair athletic performance. OBJECTIVE: To determine the effects of COVID-19 vaccination on the physiological responses to graded exercise. METHODS: Healthy physically active participants completed a 20-minute bout of graded cycling exercise at intensities corresponding to 50, 60, 70 and 80% of the pre-determined VO2max before and ~21 days after receiving the COVID-19 vaccine (2 dose Pfizer mRNA or 1 dose Johnson&Johnson). RESULTS: Vaccination had no effect on a large number of physiological responses to exercise measured in blood (e.g. lactate, epinephrine, cortisol) and by respiratory gas exchange (e.g. oxygen uptake, CO2 production, ventilation, respiratory exchange ratio, predicted VO2max, ventilatory threshold) (p>0.05). We did, however, find significant elevations in heart rate (~5 bpm) and norepinephrine (p = 0.006 and 0.04, respectively) in response to vigorous (e.g. 70-80% VO2max) intensity exercise after vaccination, particularly in those that received the two shot Pfizer mRNA vaccine regimen. These findings held true when compared to demographically matched controls who completed identical bouts of exercise several weeks apart without receiving a vaccine; delta values for heart rate (p=0.03) and norepinephrine (p=0.01) were elevated in the second trial for those that received the Pfizer mRNA vaccine compared to the controls at the 70% and 80% VO2max stages, respectively. CONCLUSION: Recent COVID-19 vaccination has minimal effects on the physiological responses to graded exercise in physically active healthy people. The small elevations in cardiovascular and neuroendocrine responses to exercise after the Pfizer mRNA vaccine regimen could have implications for athletes at the elite level and warrants investigation

    Acute exercise increases immune responses to SARS CoV-2 in a previously infected man

    Get PDF
    Evidence is emerging that exercise and physical activity provides protection against severe COVID-19 disease in patients infected with SARS-CoV-2, but it is not known how exercise affects immune responses to the virus. A healthy man completed a graded cycling ergometer test prior to and after SARS-CoV-2 infection, then again after receiving an adenovirus vector-based COVID-19 vaccine. Using whole blood SARS-CoV-2 peptide stimulation assays, IFN- ELISPOT assays, flow cytometry, ex vivo viral-specific T-cell expansion assays and deep T-cell receptor (TCR) sequencing, we found that exercise robustly mobilized highly functional SARS-CoV-2 specific T-cells to the blood compartment that recognized spike protein, membrane protein, nucleocapsid antigen and the B.1.1.7 -variant, and consisted mostly of CD3+/CD8+ T-cells and double-negative (CD4-/CD8-) CD3+ T-cells. The magnitude of SARS-CoV-2 T-cell mobilization with exercise was intensity dependent and robust when compared to T-cells recognizing other viruses (e.g. CMV, EBV, influenza). Vaccination enhanced the number of exercise-mobilized SARS-CoV-2 T-cells recognizing spike protein and the -variant only. Exercise-mobilized SARS-CoV-2 specific T-cells proliferated more vigorously to ex vivo peptide stimulation and maintained broad TCR- diversity against SARS-CoV-2 antigens both before and after ex vivo expansion. Neutralizing antibodies to SARS-CoV-2 were transiently elevated during exercise after both infection and vaccination. Finally, infection was associated with an increased metabolic demand to defined exercise workloads, which was restored to pre-infection levels after vaccination. This case study provides impetus for larger studies to determine if these immune responses to exercise can facilitate viral clearance, ameliorate symptoms of long COVID syndrome, and/or restore functional exercise capacity following SARS-CoV-2 infection. Keywords: Exercise immunology; long COVID syndrome; -variant; TCR sequencing; virus specific T-cells; metabolic response, respiratory gas exchange; lactate; catecholamines; cortisol; physical activit

    Carbohydrate use and reduction in number of balance beam falls: Implications for mental and physical fatigue

    Get PDF
    Background: Artistic Gymnastics is a sport where athletes are frequently fatigued. One element that might influence this aspect is carbohydrate, an important energy substrate for the muscles and the CNS. Our goal was to investigate the influence of fatigue over artistic gymnastics athlete's performance and the effects of a carbohydrate supplementation on their performance. Methods: We evaluated 15 athletes divided in 2 groups (control and fatigue) from 12 to 14 years old in two different experimental days. On the first day (water day), they did 5 sets of exercises on the balance beam (experimental protocol) ingesting only water, CG (control group) warmed up before the experimental protocol and FG (fatigue group) did a fatigue circuit, warm up exercises and then the experimental protocol. On the second day (carbohydrate day), we used the same protocol but CG ingested a sugar free flavored juice and FG ingested a 20% concentration maltodextrin solution before the protocol on the balance beam. Results: We observed a greater number of falls from the balance beam from the FG on the first day (5.40 ± 1.14 FG vs 3.33 ± 1.37 CG; p = 0.024) and a decrease in the number of falls on the second day (2.29 ± 1.25 FG water day vs 5.40 ± 1.14 FG carbohydrate day; p = 0.0013). Carbohydrate solution was able to supply muscle demands and improve the athlete's focus showed by the reduced number of falls. © 2013 Batatinha et al.; licensee BioMed Central Ltd

    Palmitoleic Acid (N-7) Attenuates the Immunometabolic Disturbances Caused by a High-Fat Diet Independently of PPARα

    No full text
    Palmitoleic acid (PMA) has anti-inflammatory and antidiabetic activities. Here we tested whether these effects of PMA on glucose homeostasis and liver inflammation, in mice fed with high-fat diet (HFD), are PPAR-α dependent. C57BL6 wild-type (WT) and PPAR-α-knockout (KO) mice fed with a standard diet (SD) or HFD for 12 weeks were treated after the 10th week with oleic acid (OLA, 300 mg/kg of b.w.) or PMA 300 mg/kg of b.w. Steatosis induced by HFD was associated with liver inflammation only in the KO mice, as shown by the increased hepatic levels of IL1-beta, IL-12, and TNF-α; however, the HFD increased the expression of TLR4 and decreased the expression of IL1-Ra in both genotypes. Treatment with palmitoleate markedly attenuated the insulin resistance induced by the HFD, increased glucose uptake and incorporation into muscle in vitro, reduced the serum levels of AST in WT mice, decreased the hepatic levels of IL1-beta and IL-12 in KO mice, reduced the expression of TLR-4 and increased the expression of IL-1Ra in WT mice, and reduced the phosphorylation of NF B (p65) in the livers of KO mice. We conclude that palmitoleate attenuates diet-induced insulin resistance, liver inflammation, and damage through mechanisms that do not depend on PPAR-α
    corecore