5 research outputs found

    Performance evaluation of quad-pol data compare to dual-pol SAR data for river ice classification

    No full text
    Satellite SAR data are a unique source of information about river ice since the microwaves penetrate through clouds as well as snow and ice cover. The influence of the number of polarization channels on the nature and amount of information is, however, not yet fully investigated. The article intends to compare quad-pol and dual-pol data. The studied areas include two rivers with different types of ice cover – the Peace River in Canada and the Vistula River in Poland. We used RADARSAT-2 quad-pol Single Look Complex (SLC) data. The comparison methods include separability analysis (Hellinger distance, Bhattacharyya distance) and Wishart supervised classification. We found that dual-pol and quad-pol data provide equivalent information for homogeneous ice cover (overall classification accuracy above 80% for all polarization modes). Differences were observed in case of complex river ice cover with high diversity of ice types

    Spatio-Temporal Mapping of L-Band Microwave Emission on a Heterogeneous Area with ELBARA III Passive Radiometer

    No full text
    Water resources on Earth become one of the main concerns for society. Therefore, remote sensing methods are still under development in order to improve the picture of the global water cycle. In this context, the microwave bands are the most suitable to study land–water resources. The Soil Moisture and Ocean Salinity (SMOS), satellite mission of the European Space Agency (ESA), is dedicated for studies of the water in soil over land and salinity of oceans. The part of calibration/validation activities in order to improve soil moisture retrieval algorithms over land is done with ground-based passive radiometers. The European Space Agency L-band Microwave Radiometer (ELBARA III) located near the Bubnów wetland in Poland is capable of mapping microwave emissivity at the local scale, due to the azimuthal and vertical movement of the horn antenna. In this paper, we present results of the spatio-temporal mapping of the brightness temperatures on the heterogeneous area of the Bubnów test-site consisting of an area with variable organic matter (OM) content and different type of vegetation. The soil moisture (SM) was retrieved with the L-band microwave emission of the biosphere (L-MEB) model with simplified roughness parametrization (SRP) coupling roughness and optical depth parameters. Estimated soil moisture values were compared with in-situ data from the automatic agrometeorological station. The results show that on the areas with a relatively low OM content (4–6%—cultivated field) there was good agreement between measured and estimated SM values. Further increase in OM content, starting from approximately 6% (meadow wetland), caused an increase in bias, root mean square error (RMSE), and unbiased RMSE (ubRMSE) values and a general drop in correlation coefficient (R). Despite a span of obtained R values, we found that time-averaged estimated SM using the L-MEB SRP approach strongly correlated with OM contents

    Development of an Ice Jam Flood Forecasting System for the Lower Oder River—Requirements for Real-Time Predictions of Water, Ice and Sediment Transport

    Get PDF
    Despite ubiquitous warming, the lower Oder River typically freezes over almost every year. Ice jams may occur during freeze-up and ice cover breakup phases, particularly in the middle and lower reaches of the river, with weirs and piers. The slush ice and ice blocks may accumulate to form ice jams, leading to backwater effects and substantial water level rise. The small bottom slope of the lower Oder and the tidal backflow from the Baltic Sea enhance the formation of ice jams during cold weather conditions, jeopardizing the dikes. Therefore, development of an ice jam flood forecasting system for the Oder River is much needed. This commentary presents selected results from an international workshop that took place in Wrocław (Poland) on 26–27 November 2018 that brought together an international team of experts to explore the requirements and research opportunities in the field of ice jam flood forecasting and risk assessment for the Oder River section along the German–Polish border. The workshop launched a platform for collaboration amongst Canadian, German and Polish scientists, government officials and water managers to pave a way forward for joint research focused on achieving the long-term goal of forecasting, assessing and mitigating ice jam impacts along the lower Oder. German and Polish government agencies are in need of new tools to forecast ice jams and assess their subsequent consequences and risks to communities and ship navigation along a river. Addressing these issues will also help research and ice flood management in a Canadian context. A research program would aim to develop a modelling system by addressing fundamental issues that impede the prediction of ice jam events and their consequences in cold regions
    corecore