141 research outputs found

    Boosting BCG with recombinant modified vaccinia ankara expressing antigen 85A: Different boosting intervals and implications for efficacy trials

    Get PDF
    Objectives. To investigate the safety and immunogenicity of boosting BCG with modified vaccinia Ankara expressing antigen 85A (MVA85A), shortly after BCG vaccination, and to compare this first with the immunogenicity of BCG vaccination alone and second with a previous clinical trial where MVA85A was administered more than 10 years after BCG vaccination. Design. There are two clinical trials reported here: a Phase I observational trial with MVA85A; and a Phase IV observational trial with BCG. These clinical trials were all conducted in the UK in healthy, HIV negative, BCG naı¨ve adults. Subjects were vaccinated with BCG alone; or BCG and then subsequently boosted with MVA85A four weeks later (short interval). The outcome measures, safety and immunogenicity, were monitored for six months. The immunogenicity results from this short interval BCG prime–MVA85A boost trial were compared first with the BCG alone trial and second with a previous clinical trial where MVA85A vaccination was administered many years after vaccination with BCG. Results. MVA85A was safe and highly immunogenic when administered to subjects who had recently received BCG vaccination. When the short interval trial data presented here were compared with the previous long interval trial data, there were no significant differences in the magnitude of immune responses generated when MVA85A was administered shortly after, or many years after BCG vaccination. Conclusions. The clinical trial data presented here provides further evidence of the ability of MVA85A to boost BCG primed immune responses. This boosting potential is not influenced by the time interval between prior BCG vaccination and boosting with MVA85A. These findings have important implications for the design of efficacy trials with MVA85A. Boosting BCG induced anti-mycobacterial immunity in either infancy or adolescence are both potential applications for this vaccine, given the immunological data presented here. Trial Registration. ClinicalTrials.Oxford University was the sponsor for all the clinical trials reported here

    A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1.

    Get PDF
    Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite

    Pre‐pregnancy health of women with pre‐existing diabetes or previous gestational diabetes : analysis of pregnancy risk factors and behavioural data from a digital tool

    Get PDF
    Aims: To examine health behaviours and risk factors in women with pre‐existing diabetes or previous gestational diabetes mellitus who are planning pregnancy. Methods: Health behaviour, risk factor and demographic data obtained from a digital pregnancy planning advisory tool (Tommy's charity UK) were analysed. Descriptive statistical analysis was performed, stratified by diabetes type. Results: Data from 84,359 women, including 668 with type 1 diabetes, 707 with type 2 diabetes and 1785 with previous gestational diabetes obtained over a 12‐month period (September 2019–September 2020) were analysed. 65%, 95%CI (61,68%) of women with type 2 diabetes and 46%, 95%CI (43,48%) with previous gestational diabetes were obese (BMI ≥30 kg/m2), compared with 26%, 95%CI (26,26%) without diabetes. Use of folic acid supplements was low; 41%, 95%CI (40,41%) of women without diabetes and 42%, 95%CI (40,45%) with previous gestational diabetes reported taking folic acid (any dose) while 47%, 95%CI (43.50%) women with type 1 diabetes and 44%, 95%CI (40,47%) women with type 2 diabetes respectively reported taking the recommended dose (5 mg). More women with type 1 diabetes and type 2 diabetes reported smoking (20%, 95%CI [17,23%] and 23%, 95%CI [20,26%] respectively) and taking illicit/recreational drugs (7%, 95%CI [6,10%] and 9%, 95% CI [7,11%]) compared to women without diabetes (smoking 17%, 95% CI [16,17%], drug use 5%, 95%CI [5,5%]). Alcohol consumption, low levels of physical activity and of fruit and vegetable intake were also evident. Conclusions: This study highlights the potential of online pregnancy planning advisory tools to reach high‐risk women and emphasises the need to improve pre‐pregnancy care for women with pre‐existing diabetes and previous gestational diabetes, many of whom are actively seeking advice. It is also the first to describe pre‐pregnancy health behaviours in women with previous gestational diabetes

    Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics

    Get PDF
    Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named ‘OxoScan-MS’, identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples

    Publishing and sharing multi-dimensional image data with OMERO

    Get PDF
    Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org

    Activation loop phosphorylation and cGMP saturation of PKG regulate egress of malaria parasites.

    Get PDF
    The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development
    corecore