437 research outputs found

    The clustering of radio galaxies at z~0.55 from the 2SLAQ LRG survey

    Get PDF
    We examine the clustering properties of low-power radio galaxies at redshift 0.4<z<0.8, using data from the 2SLAQ Luminous Red Galaxy (LRG) survey. We find that radio-detected LRGs (with optical luminosities of 3-5L* and 1.4GHz radio powers between 1e24 and 1e26 W/Hz) are significantly more clustered than a matched sample of radio-quiet LRGs with the same distribution in optical luminosity and colour. The measured scale length of the 2pt auto-correlation function, r0, is 12.3+/-1.2 1/h Mpc and 9.02+/-0.52 1/h Mpc for the radio-detected and radio-quiet samples respectively. Using the halo model framework we demonstrate that the radio-loud LRGs have typical halo masses of 10.1+/-1.4 x10^13 1/h M_sun compared to 6.44+/-0.32 x10^13 1/h M_sun for the radio-quiet sample. A model in which the radio-detected LRGs are almost all central galaxies within haloes provides the best fit, and we estimate that at least 30% of LRGs with the same clustering amplitude as the radio-detected LRGs are currently radio-loud. Our results imply that radio-loud LRGs typically occupy more massive haloes than other LRGs of the same optical luminosity, so the probability of finding a radio-loud AGN in a massive galaxy at z~0.55 is influenced by the halo mass in addition to the dependence on optical luminosity. If we model the radio-loud fraction of LRGs, F_rad, as a function of halo mass M, then the data are well-fitted by a power law of the form F_rad \propto M^(0.65+/-0.23). The relationship between radio emission and clustering strength could arise either through a higher fuelling rate of gas onto the central black holes of galaxies in the most massive haloes (producing more powerful radio jets) or through the presence of a denser IGM (providing a more efficient working surface for the jets, thus boosting their radio luminosity).Comment: Accepted for publication in MNRA

    Optical Spectroscopy of GX339-4 during the High-Soft and Low-Hard States II: Line Ionisation and Emission Region

    Full text link
    We have carried out observations of the X-ray transient GX339-4 during its high-soft and low-hard X-ray spectral states. Our high-resolution spectroscopic observation in 1999 April suggests that the H-alpha line has a single-peaked profile in the low-hard state as speculated in our previous paper. The HeII 4686 line, however, has a double-peaked profile in both the high-soft and low-hard states. This suggests that the line-emission mechanism is different in the two states. Our interpretation is that double-peaked lines are emitted from a temperature-inversion layer on the accretion-disk surface when it is irradiatively heated by soft X-rays. Single-peaked lines may be emitted from outflow/wind matter driven by hard X-ray heating. We have constructed a simple plane-parallel model and we use it to illustrate that a temperature-inversion layer can be formed at the disk surface under X-ray illumination. We also discuss the conditions required for the formation of temperature inversion and line emission. Based on the velocity separations measured for the double-peaked lines in the high-soft state, we propose that GX339-4 is a low-inclination binary system. The orbital inclination is about 15 deg if the orbital period is 14.8 hours.Comment: accepted by mnras, 1 aug 200

    The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Get PDF
    © 2016 The Authors. We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ~ 0.8. The catalogue covers ~800 deg 2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of i mod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radioloud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc

    Optical Properties of High-Frequency Radio Sources from the Australia Telescope 20 GHz (AT20G) Survey

    Full text link
    Our current understanding of radio-loud AGN comes predominantly from studies at frequencies of 5 GHz and below. With the recent completion of the Australia Telescope 20 GHz (AT20G) survey, we can now gain insight into the high-frequency radio properties of AGN. This paper presents supplementary information on the AT20G sources in the form of optical counterparts and redshifts. Optical counterparts were identified using the SuperCOSMOS database and redshifts were found from either the 6dF Galaxy survey or the literature. We also report 144 new redshifts. For AT20G sources outside the Galactic plane, 78.5% have optical identifications and 30.9% have redshift information. The optical identification rate also increases with increasing flux density. Targets which had optical spectra available were examined to obtain a spectral classification. There appear to be two distinct AT20G populations; the high luminosity quasars that are generally associated with point-source optical counterparts and exhibit strong emission lines in the optical spectrum, and the lower luminosity radio galaxies that are generally associated with passive galaxies in both the optical images and spectroscopic properties. It is suggested that these different populations can be associated with different accretion modes (cold-mode or hot-mode). We find that the cold-mode sources have a steeper spectral index and produce more luminous radio lobes, but generally reside in smaller host galaxies than their hot-mode counterparts. This can be attributed to the fact that they are accreting material more efficiently. Lastly, we compare the AT20G survey with the S-cubed semi-empirical (S3-SEX) models and conclude that the S3-SEX models need refining to correctly model the compact cores of AGN. The AT20G survey provides the ideal sample to do this.Comment: Accepted for publication in MNRA

    Modelling multiscale aspects of colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is responsible for nearly half a million deaths annually world-wide [11]. We present a series of mathematical models describing the dynamics of the intestinal epithelium and the kinetics of the molecular pathway most commonly mutated in CRC, the Wnt signalling network. We also discuss how we are coupling such models to build a multiscale model of normal and aberrant guts. This will enable us to combine disparate experimental and clinical data, to investigate interactions between phenomena taking place at different levels of organisation and, eventually, to test the efficacy of new drugs on the system as a whole

    Structure–property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes

    Get PDF
    Microwave heating presents a faster, lower energy synthetic methodology for the realization of functional materials. Here, we demonstrate for the first time that employing this method also leads to a decrease in the occurrence of defects in olivine structured LiFe1−xMnxPO4. For example, the presence of antisite defects in this structure precludes Li+ diffusion along the b-axis leading to a significant decrease in reversible capacities. Total scattering measurements, in combination with Li+ diffusion studies using muon spin relaxation (μ+SR) spectroscopy, reveal that this synthetic method generates fewer defects in the nanostructures compared to traditional solvothermal routes. Our interest in developing these routes to mixed-metal phosphate LiFe1−xMnxPO4 olivines is due to the higher Mn2+/3+ redox potential in comparison to the Fe2+/3+ pair. Here, single-phase LiFe1−xMnxPO4 (x = 0, 0.25, 0.5, 0.75 and 1) olivines have been prepared following a microwave-assisted approach which allows for up to 4 times faster reaction times compared to traditional solvothermal methods. Interestingly, the resulting particle morphology is dependent on the Mn content. We also examine their electrochemical performance as active electrodes in Li-ion batteries. These results present microwave routes as highly attractive for reproducible, gram-scale syntheses of high quality nanostructured electrodes which display close to theoretical capacity for the full iron phase
    corecore