581 research outputs found
Life events and acute cardiovascular reactions to mental stress: a cohort study
Objective: This study addressed the issue of whether frequent exposure to life events is associated with aggravation or blunting of cardiovascular reactions to acute mental stress. Methods: In a substantial cohort of 585 healthy young adults, systolic and diastolic blood pressure and pulse rate were recorded at rest and in response to a mental arithmetic stress task. Participants indicated, from a list of 50 events, those they had experienced in the last year. Results: There was an overall association between life events and blunted cardiovascular reactivity that was driven by variations in the frequency of exposure to desirable events. The total number of events and the number of personal events were negatively associated with systolic blood pressure and pulse rate reactions to acute stress, whereas the number of work-related events was negatively associated with diastolic blood pressure and pulse rate reactivity. The negative association between total events and systolic blood pressure reactivity was stronger for women than men, whereas men exposed to frequent undesirable events showed enhanced diastolic blood pressure reactivity. The blunting of pulse rate reactivity associated with frequent personal life events was evident particularly for those who had a relatively large number of close friends. Conclusions: The nature and extent of the association between life events exposure and stress reactivity in young adults depends on the valence of the events together with the sex of the individual and their social network size
On (not) deriving the entropy of barocaloric phase transitions from crystallography and neutron spectroscopy
We review well-known signatures of disorder in crystallographic and inelastic
neutron scattering data. We show that these can arise from different types of
disorder, corresponding to different values of the system entropy. Correlating
the entropy of a material with its atomistic structure and dynamics is in
general a difficult problem that requires correlating information between
multiple experimental techniques including crystallography, spectroscopy, and
calorimetry. These comments are illustrated with particular reference to
barocalorics, but are relevant to a broad range of calorics and other
disordered crystalline materials.Comment: 11 pages, 3 figure
Near-surface salinity reveals the oceanic sources of moisture for Australian precipitation through atmospheric moisture transport
Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(15), (2020): 6707-6730, https://doi.org/10.1175/JCLI-D-19-0579.1.The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.This research is funded through the Earth System and Climate Change Hub of the Australian government’s National Environmental Science Programme. The assistance of computing resources from the National Computational Infrastructure supported by the Australian Government is acknowledged. CCU acknowledges support from the U.S. National Science Foundation under Grant OCE-1663704. MF was supported by the by Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania. The authors wish to acknowledge PyFerret (https://ferret.pmel.noaa.gov/Ferret/) and the Cimate Data Operators (https://code.mpimet.mpg.de/projects/cdo/) for the data analysis and graphical representations in this paper
Dynamics in the ordered and disordered phases of barocaloric adamantane
High-entropy order-disorder phase transitions can be used for efficient and
eco-friendly barocaloric solid-state cooling. Here the barocaloric effect is
reported in an archetypal plastic crystal, adamantane. Adamantane has a
colossal isothermally reversible entropy change of 106 J K-1 kg-1 . Extremely
low hysteresis means that this can be accessed at pressure differences less
than 200 bar. Configurational entropy can only account for about 40% of the
total entropy change; the remainder is due to vibrational effects. Using
neutron spectroscopy and supercell lattice dynamics calculations, it is found
that this vibrational entropy change is mainly caused by softening in the
high-entropy phase of acoustic modes that correspond to molecular rotations. We
attribute this behaviour to the contrast between an 'interlocked' state in the
low-entropy phase and sphere-like behaviour in the high-entropy phase. Although
adamantane is a simple van der Waals solid with near-spherical molecules, this
approach can be leveraged for the design of more complex barocaloric molecular
crystals. Moreover, this study shows that supercell lattice dynamics
calculations can accurately map the effect of orientational disorder on the
phonon spectrum, paving the way for studying the vibrational entropy, thermal
conductivity, and other thermodynamic effects in more complex materials.Comment: 14 pages, 6 figure
Generating and testing ecological hypotheses at the pondscape with environmental DNA metabarcoding: A case study on a threatened amphibian
Background: Environmental DNA (eDNA) metabarcoding is revolutionizing biodiversity monitoring, but has unrealized potential for ecological hypothesis generation and testing. Aims: Here, we validate this potential in a large-scale analysis of vertebrate community data generated by eDNA metabarcoding of 532 UK ponds. Materials & Methods: We test biotic associations between the threatened great crested newt (Triturus cristatus) and other vertebrates as well as abiotic factors influencing T.cristatus detection at the pondscape. Furthermore, we test the status of T.cristatus as an umbrella species for pond conservation by assessing whether vertebrate species richness is greater in ponds with T.cristatus and higher T.cristatus Habitat Suitability Index (HSI) scores. Results: Triturus cristatus detection was positively correlated with amphibian and waterfowl species richness. Specifically, T.cristatus was positively associated with smooth newt (Lissotriton vulgaris), common coot (Fulica atra), and common moorhen (Gallinula chloropus), but negatively associated with common toad (Bufo bufo). Triturus cristatus detection did not significantly decrease as fish species richness increased, but negative associations with common carp (Cyprinus carpio), three-spined stickleback (Gasterosteus aculeatus), and ninespine stickleback (Pungitius pungitius) were identified. Triturus cristatus detection was negatively correlated with mammal species richness, and T.cristatus was negatively associated with gray squirrel (Sciurus carolinensis). Triturus cristatus detection was negatively correlated with larger pond area, presence of inflow, and higher percentage of shading, but positively correlated with HSI score, supporting its application to T.cristatus survey. Vertebrate species richness was significantly higher in T.cristatus ponds and broadly increased as T.cristatus HSI scores increased. Discussion: We reaffirm reported associations (e.g., T.cristatus preference for smaller ponds) but also provide novel insights, including a negative effect of pond inflow on T.cristatus. Conclusion: Our findings demonstrate the prospects of eDNA metabarcoding for ecological hypothesis generation and testing at landscape scale, and dramatic enhancement of freshwater conservation, management, monitoring, and research
The Association Between Ascorbate and the Hypoxia-Inducible Factors in Human Renal Cell Carcinoma Requires a Functional Von Hippel-Lindau Protein
Hypoxia-inducible transcription factors (HIFs) drive angiogenesis and cancer cell growth, contributing to an aggressive tumor phenotype. HIF-α protein levels and activity are controlled at the post-translational level by HIF hydroxylases. Hydroxylated HIF-α is recognized by the von Hippel Lindau (VHL) tumor suppressor and targeted for degradation. The HIF hydroxylases are members of the iron and 2-oxoglutarate-dependent dioxygenases, which require ascorbate as cofactor for activity. Clear cell renal cell carcinomas (ccRCC) harbor mutations in the VHL gene, whereas papillary RCC (pRCC) have a functional VHL. These natural occurring VHL variants in RCC enable the testing, in clinical samples, of the hypothesis that ascorbate modulates HIF-α levels through its role as a cofactor for the HIF hydroxylases. We measured ascorbate, HIF-1α, and HIF-2α protein and HIF downstream targets BNIP3, CA9, cyclin D1, GLUT1, and VEGF (combined to generate the HIF pathway score) in VHL-defective ccRCC (n = 73) and VHL-proficient pRCC human tumor tissue (n = 41). HIF and ascorbate levels were increased in ccRCC and pRCC tumors compared to matched renal cortex. HIF-1 and total HIF pathway activation scores were decreased with higher ascorbate in pRCC tumors (Spearman r = −0.38, p < 0.05 and r = −0.35, p < 0.05). This was not evident for ccRCC tumors. In mechanistic studies in vitro, ascorbate influenced HIF-1 activity in VHL-proficient, but not VHL-defective ccRCC cells. Our results indicate that ccRCC, which lacks a functional VHL, does not respond to ascorbate-mediated modulation of the HIF response. This contrasts with the demonstrated association between ascorbate content and the HIF pathway observed in pRCC and other tumors with a functional VHL. The results support a role for ascorbate as a modulator of HIF activity and tumor aggression in cancer types with a functional hypoxic response
Developing community-based urine sampling methods to deploy biomarker technology for the assessment of dietary exposure
Objective:
Obtaining objective, dietary exposure information from individuals is challenging because of the complexity of food consumption patterns and the limitations of self-reporting tools (e.g., FFQ and diet diaries). This hinders research efforts to associate intakes of specific foods or eating patterns with population health outcomes.
Design:
Dietary exposure can be assessed by the measurement of food-derived chemicals in urine samples. We aimed to develop methodologies for urine collection that minimised impact on the day-to-day activities of participants but also yielded samples that were data-rich in terms of targeted biomarker measurements.
Setting:
Urine collection methodologies were developed within home settings.
Participants:
Different cohorts of free-living volunteers.
Results:
Home collection of urine samples using vacuum transfer technology was deemed highly acceptable by volunteers. Statistical analysis of both metabolome and selected dietary exposure biomarkers in spot urine collected and stored using this method showed that they were compositionally similar to urine collected using a standard method with immediate sample freezing. Even without chemical preservatives, samples can be stored under different temperature regimes without any significant impact on the overall urine composition or concentration of forty-six exemplar dietary exposure biomarkers. Importantly, the samples could be posted directly to analytical facilities, without the need for refrigerated transport and involvement of clinical professionals.
Conclusions:
This urine sampling methodology appears to be suitable for routine use and may provide a scalable, cost-effective means to collect urine samples and to assess diet in epidemiological studies
Towards an integrative understanding of soil biodiversity
Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species–energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale‐dependent nature of soil biodiversity
- …