11,176 research outputs found
Thermodynamic and spectral properties of compressed Ce calculated by the merger of the local density approximation and dynamical mean field theory
We have calculated thermodynamic and spectral properties of Ce metal over a
wide range of volume and temperature, including the effects of 4f electron
correlations, by the merger of the local density approximation and dynamical
mean field theory (DMFT). The DMFT equations are solved using the quantum Monte
Carlo technique supplemented by the more approximate Hubbard I and Hartree Fock
methods. At large volume we find Hubbard split spectra, the associated local
moment, and an entropy consistent with degeneracy in the moment direction. On
compression through the volume range of the observed gamma-alpha transition, an
Abrikosov-Suhl resonance begins to grow rapidly in the 4f spectra at the Fermi
level, a corresponding peak develops in the specific heat, and the entropy
drops rapidly in the presence of a persistent, although somewhat reduced local
moment. Our parameter-free spectra agree well with experiment at the alpha- and
gamma-Ce volumes, and a region of negative curvature in the correlation energy
leads to a shallowness in the low-temperature total energy over this volume
range which is consistent with the gamma-alpha transition. As measured by the
double occupancy, we find a noticeable decrease in correlation on compression
across the transition; however, even at the smallest volumes considered, Ce
remains strongly correlated with residual Hubbard bands to either side of a
dominant Fermi-level structure. These characteristics are discussed in light of
current theories for the volume collapse transition in Ce.Comment: 19 pages including 14 eps figure
Quantum criticality with a twist - interplay of correlations and Kohn anomalies in three dimensions
A general understanding of quantum phase transitions in strongly correlated
materials is still lacking. By exploiting a cutting-edge quantum many-body
approach, the dynamical vertex approximation, we make an important progress,
determining the quantum critical properties of the antiferromagnetic transition
in the fundamental model for correlated electrons, the Hubbard model in three
dimensions. In particular, we demonstrate that -in contradiction to the
conventional Hertz-Millis-Moriya theory- its quantum critical behavior is
driven by the Kohn anomalies of the Fermi surface, even when electronic
correlations become strong.Comment: 6 pages, 4 figures (8 pages Supplemental Material
Comparing pertinent effects of antiferromagnetic fluctuations in the two and three dimensional Hubbard model
We use the dynamical vertex approximation (DA) with a Moriyaesque correction for studying the impact of antiferromagnetic fluctuations
on the spectral function of the Hubbard model in two and three dimensions. Our
results show the suppression of the quasiparticle weight in three dimensions
and dramatically stronger impact of spin fluctuations in two dimensions where
the pseudogap is formed at low enough temperatures. Even in the presence of the
Hubbard subbands, the origin of the pseudogap at weak-to-intermediate coupling
is in the splitting of the quasiparticle peak. At stronger coupling (closer to
the insulating phase) the splitting of Hubbard subbands is expected instead.
The -dependence of the self energy appears to be also much more
pronounced in two dimensions as can be observed in the -resolved
DA spectra, experimentally accessible by angular resolved photoemission
spectroscopy in layered correlated systems.Comment: 10 pages, 12 figure
In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography
A single-electron transistor has been realized in a Ga[Al]As heterostructure
by oxidizing lines in the GaAs cap layer with an atomic force microscope. The
oxide lines define the boundaries of the quantum dot, the in-plane gate
electrodes, and the contacts of the dot to source and drain. Both the number of
electrons in the dot as well as its coupling to the leads can be tuned with an
additional, homogeneous top gate electrode. Pronounced Coulomb blockade
oscillations are observed as a function of voltages applied to different gates.
We find that, for positive top-gate voltages, the lithographic pattern is
transferred with high accuracy to the electron gas. Furthermore, the dot shape
does not change significantly when in-plane voltages are tuned.Comment: 4 pages, 3 figure
- …