13 research outputs found

    Genomic mining of prokaryotic repressors for orthogonal logic gates

    Get PDF
    Genetic circuits perform computational operations based on interactions between freely diffusing molecules within a cell. When transcription factors are combined to build a circuit, unintended interactions can disrupt its function. Here, we apply 'part mining' to build a library of 73 TetR-family repressors gleaned from prokaryotic genomes. The operators of a subset were determined using an in vitro method, and this information was used to build synthetic promoters. The promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both strongly repress their cognate promoter (5- to 207-fold) and exhibit minimal interactions with other promoters. Each repressor-promoter pair was converted to a NOT gate and characterized. Used as a set of 16 NOT/NOR gates, there are >10[superscript 54] circuits that could be built by changing the pattern of input and output promoters. This represents a large set of compatible gates that can be used to construct user-defined circuits.United States. Air Force Office of Scientific Research (Award FA9550-11-C-0028)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a)United States. Defense Advanced Research Projects Agency. Chronical of Lineage Indicative of Origins (N66001-12-C-4016)United States. Office of Naval Research (N00014-13-1-0074)National Institutes of Health (U.S.) (GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SA5284-11210

    Stepwise selection of TetR variants recognizing tet operator 6C with high affinity and specificity.

    No full text
    The exchange of Trp43 to Arg in the sixth position of the TetR recognition alpha-helix leads to a new DNA recognition specificity for tetO-6C, however, it is bound with only low affinity. Specificity and affinity of this mutant were substantially increased by additional amino acid exchanges in the last positions of the recognition alpha-helix and the turn, which most likely play structural roles in the formation of the TetR-tetO complex. The last residue in the turn of the alpha-helix-turn-alpha-helix motif is a discriminator of binding to other tetO variants and contributes efficiently to the affinity for the newly recognized tetO-6C sequence. Short residues at this position improve sequence specific binding when combined with a residue in the recognition alpha-helix, which directly reads out the recognized tetO sequence. We assume that small residues at the end of the turn permit the recognition alpha-helix to assume the optimal position within the motif for docking to the DNA target. Thus, residues allowing direct and favourable contacts to the newly recognized DNA are not sufficient to increase the binding specificity and affinity, but need to be accompanied by additional exchanges allowing the formation of these contacts

    Domain motions accompanying Tet repressor induction defined by changes of interspin distances at selectively labeled sites.

    No full text
    To investigate internal movements in Tet repressor (TetR) during induction by tetracycline (tc) we determined the interspin distances between pairs of nitroxide spin labels attached to specific sites by electron paramagnetic resonance (EPR) spectroscopy. For this purpose, we constructed six TetR variants with engineered cysteine pairs located in regions with presumed conformational changes. These are I22C and N47C in the DNA reading head, T152C/Q175C, A161C/Q175C and R128C/D180C near the tc-binding pocket, and T202C in the dimerization surface. All TetR mutants show wild-type activities in vivo and in vitro. The binding of tc results in a considerable decrease of the distance between the nitroxide groups attached to both I22C residues in the TetR dimer and an increase of the distance between the N47C residues. These opposite effects are consistent with a twisting motion of the DNA reading heads. Changes of the spin-spin interactions between nitroxide groups attached to residues near the tc-binding pocket demonstrate that the C-terminal end of alpha-helix 9 moves away from the protein core upon DNA binding. Alterations of the dipolar interaction between nitroxide groups at T202C indicate different conformations for tc and DNA-bound repressor also in the dimerization area. These results are used to model structural changes of TetR upon induction
    corecore