553 research outputs found

    Bone fixation techniques for managing joint disorders and injuries:A review study

    Get PDF
    The majority of surgical procedures treating joint disorders require a technique to realize a firm implant-to-tissue and/or a tissue-to-tissue fixation. Fixation methods have direct effects on survival, performance and integration of orthopedic implants This review paper gives an overview of novel fixation techniques that have been evaluated and optimized for orthopaedic joint implants and could be alternatives for traditional implant fixation techniques or inspirations for future design of joint implantation procedures. Method: The articles were selected using the Scopus search engine. Key words referring to traditional fixation methods have been excluded to find potential innovative fixation techniques. In order to review the recent anchorage systems, only articles that been published during the period of 2010–2020 have been included. Results: A total of 57 studies were analyzed. The result revealed that three main fixation principles are being employed: using mechanical interlockings, employing adhesives, and performing tissue-bonding strategies. Conclusion: The development of fixation techniques demonstrates a transformation from the general anchoring tools like K-wires toward application-specific designs. Several new methods have been designed and evaluated, which highlight encouraging results as described in this review. It seems that mechanical fixations provide the strongest anchorage. Employing (bio)-adhesives as fixation tool could revolutionize the field of orthopedic surgery. However, the adhesives must be improved and optimized to meet the requirements of an anchorage system. Long-term fixation might be formed by tissue ingrowth approaches which showed promising results. In most cases further clinical studies are required to explore their outputs in clinical applications

    Ten cold clubfeet

    Get PDF
    Background and purpose — Idiopathic clubfeet are commonly treated with serial manipulation and casting, known as the Ponseti method. The use of Plaster of Paris as casting material causes both exothermic and endothermic reactions. The resulting temperature changes can create discomfort for patients. Patients and methods — In 10 patients, we used a digital thermometer with a data logger to measure below-cast temperatures to create a thermal profile of the treatment process. Results — After the anticipated temperature peak, a surprisingly large dip was observed (Tmin = 26 °C) that lasted 12 hours. Interpretation — Evaporation of excess water from a cast might be a cause for discomfort for clubfoot patients and subsequently, their caregivers

    Design and Evaluation of a Magnetic Rotablation Catheter for Arterial Stenosis

    Get PDF
    Arterial stenosis is a high-risk disease accompanied by large amounts of calcified deposits and plaques that develop inside the vasculature. These deposits should be reduced to improve blood flow. However, current methods used to reduce stenosis require externally-controlled actuation systems resulting in limited workspace or patient risks. This results in an unexplored preference regarding the revascularization strategy for symptomatic artery stenosis. In this paper, we propose a novel internally-actuated solution: a magnetic spring-loaded rotablation catheter. The catheter is developed to achieve stenosis-debulking capabilities by actuating drill bits using two internal electromagnetic coils and a magnetic reciprocating spring-loaded shaft. The state-space model of the catheter is validated by comparing the simulation results of the magnetic fields of the internal coils with the experimental results of a fabricated prototype. Contact forces of the catheter tip are measured experimentally, resulting in a maximum axial force of 2.63 N and a torque of 5.69 mN-m. Finally, we present interventions in which the catheter is inserted to a vascular target site and demonstrate plaque-specific treatment using different detachable actuator bits. Calcified deposits are debulked and visualized via ultrasound imaging. The catheter can reduce a stenosis cross-sectional area by up to 35%, indicating the potential for the treatment of calcified lesions, which could prevent restenosis
    corecore