81 research outputs found

    An adaptive hybrid control architecture for an active transfemoral prosthesis

    Get PDF
    The daily usage of a prosthesis for people with an amputation consists of phases of intermittentand continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architectureto control a transfemoral prosthesis, where separate algorithms are used depending on these two differenttypes of movement. For intermittent walking, an interpolation-based algorithm generates control signals forthe ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing anadaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controllerto another is also presented in the design of the architecture. The individual algorithms for the generation ofthe joints angles’ references, along with the switching strategy were experimentally validated on a pilottest with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. Theresults demonstrate the capability of the individual algorithms to generate the required control signals whileundergoing smooth transitions when required. Through the use of a combination of interpolation and adaptivefrequency oscillator-based methods, the controller also demonstrates its response adaptation capability tovarious walking speeds

    An adaptive hybrid control architecture for an active transfemoral prosthesis

    Get PDF
    The daily usage of a prosthesis for people with an amputation consists of phases of intermittent and continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architecture to control a transfemoral prosthesis, where separate algorithms are used depending on these two different types of movement. For intermittent walking, an interpolation-based algorithm generates control signals for the ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing an adaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controller to another is also presented in the design of the architecture. The individual algorithms for the generation of the joints angles’ references, along with the switching strategy were experimentally validated on a pilot test with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. The results demonstrate the capability of the individual algorithms to generate the required control signals while undergoing smooth transitions when required. Through the use of a combination of interpolation and adaptive frequency oscillator-based methods, the controller also demonstrates its response adaptation capability to various walking speeds

    A completely intramedullary leg lengthening device

    Get PDF
    The procedure and the external fixator for lengthening long bones was developed by G.A. Ilizarov in the late 1960's. This technique has, despite its proven abilities for leg lengthening and correction of angular deformities, some considerable disadvantages for patients. Discomfort, infections and restricted weight bearing are some reasons for the development of a completely intramedullary device for leg lengthening. The device developed is a telescopic intramedullary nail with a maximum diameter of 13 mm, which can be lengthened with 0.5 mm steps induced by a shape memory alloy actuator. The electrical energy for the actuator is supplied from outside the body by inductive coupling of two solenoid coils. Internally, the electrical energy is transformed to thermal energy by thermofoils and Peltier-element

    Planar And Spatial Gravity Balancing With Normal Springs

    Get PDF
    Very often, spring-to-gravity-balancing mechanisms are conceived with ideal (zero-free-length l0 =0) springs. However, the use of ideal springs in the conception phase tends to lead to more complex mechanisms because the ideal spring functionality has to be approximated with normal springs. To facilitate construction of (gravity) balancers, employing normal springs (l0 ≠0) directly mounted between the link attachment points of the mechanism in the conception phase therefore seems beneficiary. This paper discusses spring mechanisms that enable perfect balancing of gravity acting on an inverted pendulum while employing normal springs between the spring-attachment points: The design synthesis of such mechanisms will be explained and balancing conditions will be derived, using a potential energy consideration

    Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation

    Get PDF
    This paper introduces a newly developed gait rehabilitation device. The device, called LOPES, combines a freely translatable and 2-D-actuated pelvis segment with a leg exoskeleton containing three actuated rotational joints: two at the hip and one at the knee. The joints are impedance controlled to allow bidirectional mechanical interaction between the robot and the training subject. Evaluation measurements show that the device allows both a "pa- tient-in-charge" and "robot-in-charge" mode, in which the robot is controlled either to follow or to guide a patient, respectively. Electromyography (EMG) measurements (one subject) on eight important leg muscles, show that free walking in the device strongly resembles free treadmill walking; an indication that the device can offer task-specific gait training. The possibilities and limitations to using the device as gait measurement tool are also shown at the moment position measurements are not accurate enough for inverse-dynamical gait analysis

    Design and Evaluation of a Magnetic Rotablation Catheter for Arterial Stenosis

    Get PDF
    Arterial stenosis is a high-risk disease accompanied by large amounts of calcified deposits and plaques that develop inside the vasculature. These deposits should be reduced to improve blood flow. However, current methods used to reduce stenosis require externally-controlled actuation systems resulting in limited workspace or patient risks. This results in an unexplored preference regarding the revascularization strategy for symptomatic artery stenosis. In this paper, we propose a novel internally-actuated solution: a magnetic spring-loaded rotablation catheter. The catheter is developed to achieve stenosis-debulking capabilities by actuating drill bits using two internal electromagnetic coils and a magnetic reciprocating spring-loaded shaft. The state-space model of the catheter is validated by comparing the simulation results of the magnetic fields of the internal coils with the experimental results of a fabricated prototype. Contact forces of the catheter tip are measured experimentally, resulting in a maximum axial force of 2.63 N and a torque of 5.69 mN-m. Finally, we present interventions in which the catheter is inserted to a vascular target site and demonstrate plaque-specific treatment using different detachable actuator bits. Calcified deposits are debulked and visualized via ultrasound imaging. The catheter can reduce a stenosis cross-sectional area by up to 35%, indicating the potential for the treatment of calcified lesions, which could prevent restenosis

    Three-dimensional correction of scoliosis by a double spring reduction system as a dynamic internal brace:a pre-clinical study in Göttingen minipigs

    Get PDF
    BACKGROUND CONTEXT: Adolescent idiopathic scoliosis (AIS) is a major skeletal deformity that is characterized by a combination of apical rotation, lateral bending and apical lordosis. To provide full 3D correction, all these deformations should be addressed. We developed the Double Spring Reduction (DSR) system, a (growth-friendly) concept that continuously corrects the deformity through two different elements: A posterior convex Torsional Spring Implant (TSI) that provides a derotational torque at the apex, and a concave Spring Distraction System (SDS), which provides posterior, concave distraction to restore thoracic kyphosis. PURPOSE: To determine whether the DSR components are able to correct an induced idiopathic-like scoliosis and to compare correction realized by the TSI alone to correction enforced by the complete DSR implant. STUDY DESIGN/SETTING: Preclinical randomized animal cohort study. PATIENT SAMPLE: Twelve growing Göttingen minipigs. OUTCOME MEASURES: Coronal Cobb angle, T10-L3 lordosis/kyphosis, apical axial rotation, relative anterior lengthening. METHODS: All mini-pigs received the TSI with a contralateral tether to induce an idiopathic-like scoliosis with apical rotation (mean Cobb: 20.4°; mean axial apical rotation: 13.1°, mean lordosis: 4.9°). After induction, the animals were divided into two groups: One group (N=6) was corrected by TSI only (TSI only-group), another group (N=6) was corrected by a combination of TSI and SDS (DSR-group). 3D spinal morphology on CT was compared between groups over time. After 2 months of correction, animals were euthanized. RESULTS: Both intervention groups showed excellent apical derotation (TSI only-group: 15.0° to 5.4°; DSR-group: 11.2° to 3.5°). The TSI only-group showed coronal Cobb improvement from 22.5° to 6.0°, while the DSR-group overcorrected the 18.3° Cobb to -9.2°. Lordosis was converted to kyphosis in both groups (TSI only-group: -4.6° to 4.3°; DSR-group: -5.2° to 25.0°) which was significantly larger in the DSR-group (p<.001). CONCLUSIONS: The TSI alone realized strong apical derotation and moderate correction in the coronal and sagittal plane. The addition of distraction on the posterior concavity resulted in more coronal correction and reversal of induced lordosis into physiological kyphosis. CLINICAL SIGNIFICANCE: This study shows that dynamic spring forces could be a viable method to guide the spine towards healthy alignment, without fusing it or inhibiting its growth
    • 

    corecore