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ABSTRACT 
Very often, spring-to-gravity-balancing mechanisms are 
conceived with ideal (zero-free-length l0=0) springs. However, 
the use of ideal springs in the conception phase tends to lead to 
more complex mechanisms because the ideal spring 
functionality has to be approximated with normal springs. To 
facilitate construction of (gravity) balancers, employing normal 
springs (l0≠0) directly mounted between the link attachment 
points of the mechanism in the conception phase therefore 
seems beneficiary. This paper discusses spring mechanisms that 
enable perfect balancing of gravity acting on an inverted 
pendulum while employing normal springs between the spring-
attachment points: The design synthesis of such mechanisms 
will be explained and balancing conditions will be derived, 
using a potential energy consideration. 
 Keywords: static balance, gravity equilibrator, spatial, rolling 
link mechanisms, rehabilitation technology. 

INTRODUCTION 
In a companion paper, several spatial mechanisms are 
presented that enable perfect static gravity balance for rotations 
about a fixed pivot provided that the determined balancing 
conditions are satisfied [16]. That paper shows that not 
satisfying the geometric conditions for perfect spatial static 
spring-to-spring balance (Fig. 1a) causes a residual torque that 
can be statically balanced by coupling a mass rotating about a 
fixed pivot to the spring mechanism (Fig. 1b). 
 As is the case for many of the quasi-planar systems in the 
static balancing theory, the conception of these mechanisms 
was based on the employment of ideal or zero-free-length 
springs (l0=0) between their attachment points [1, 3, 6]. 

However, to achieve ideal spring functionality with normal or 
non-zero-free-length springs (l0≠0), special constructions or 
springs are required [5-7, 9, 11, 15, 16]. Other methods of 
approximating static balance with normal springs include 
application of wrapping cams or non-linear springs using 
special coiling techniques [4, 6, 17]. However, although 
achieving ideal spring functionality with normal springs is 
possible, it tends to complicate mechanism construction, 
especially with large spring pre-stresses in combination with 
relative large mechanism movements (causing large spring 
strains). To facilitate construction of (gravity) balancers, 
employing normal springs directly mounted between the link 
attachment points of the mechanism in the conception phase 
therefore seems beneficiary. 
 This paper discusses planar (revolute joint) and spatial 
(spherical joint) spring-mechanisms that enable perfect 
balancing of gravity acting on an inverted pendulum while 
employing normal springs between the spring-attachment 
points. It will be shown that not satisfying the geometric 
conditions required for perfect static balance and replacing the 
ideal springs with normal springs in an initially perfect ideal 
spring-to-spring balancer, causes a residual torque that can be 
statically balanced by coupling a mass rotating about a fixed 
pivot, to the spring mechanism. This will be done by means of 
potential energy considerations: First the total potential energy 
expression of the resulting spring-mechanism is determined as 
a function of a rotation of the top triangle or cone relative to the 
bottom one. Subsequently possible solutions are presented that 
(re)enable a constant potential energy of the mechanism. 
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NOMENCLATURE 
a,b,c     =  distance from pivot to spring attachment 
a*,b*,c*  =  distance from pivot to spring attachment when 

projected on the yz-plane 
Ci      =  spring stiffness 
l0i     =  free length (length of spring when not preloaded 

or loaded externally) 
li       =  Actual spring-length (l0i+(pre)strain of springs) 

mi      =  mass 
rr, rs     =  radius of rollers/ spheres 
R i     =  distance from fixed pivot to center of gravity of a 

mass  
V       =  potential energy 
2α, 2β   =  angles between lines from pivot to spring 

attachment points (apical angle triangle/ cone) 
ρ1, ρ2, ρ3  =  angle between the axis of revolution of a cone 

and the line from pivot to spring attachment 
when projected on the yz-plane 

θ, φ     =  rotation angles 
ψ1, ψ2, ψ3 =  angles between symmetry line and a to c 

respectively. 

PERFECT 1DOF STATIC GRAVITY BALANCING 
Consider the spring-mechanism given in Fig. 2. The 
mechanism consists of two triangles with apical angles of 2α 
and 2β. The triangles are interconnected with a revolute joint at 
their apexes. The lever-arm lengths are a and b. Furthermore 
two normal linear extension springs are employed with 
stiffness C1 and C2 and free-length l01 and l02 respectively. 
 Note that the mechanism’s architecture is the same as the 
basic ideal spring-to-spring balancer, amply discussed in 
literature [6, 8, 9, 15], but with the lever arms a=b≠c=d. 
Furthermore the two employed ideal linear springs have been 
replaced with normal springs. In the course of this section the 
consequences of these actions are discussed, using a potential 
energy consideration. 

 

 
 
 
Figure 2. 1dof mechanism with normal linear springs employed 
between the spring attachment points of levers a and b. The springs 
employed have a stiffness C1 and C2 with a zero length l01 and l02 
respectively. 
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Figure 1. Overview of spatial static balancing mechanisms with ideal 
linear tension springs between the spring attachment points, with: 2α 
and 2β the apical angles of respectively the top –and bottom cone, on 
which the levers a to f are mounted; R the distance from a fixed pivot 
to the center of gravity of the mass; Ci the spring stiffness. 
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Using the symbols shown in Fig. 2, where it is especially noted 
that the upper half of the mechanism is rotated through an 
angle of 2θ, the following geometrical relations can be 
identified: 
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Writing out eq. (1) gives: 
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where ( )βαγ += 2
1  

 

The total potential energy of this mechanism yields: 
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Substitution of eq. (2) in eq. (3) and rewriting gives: 
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where ( )βαγ += 2
1  and K represents the constant terms in the 

expression. 
 

 From eq. (4) it is readily seen that the potential energy of the 
mechanism is independent of the rotation 2θ of the top triangle 
if 2

2
2

1 bCaC = , α+β=0.5π and l01=l02=0: The resulting 
mechanism then satisfies the balancing conditions derived for 
the basic ideal spring-to-spring balancer [6, 8, 9, 15]. If these 

static spring-to-spring balancing conditions are not satisfied, it 
is seen that a cos2θ; sin2θ; cosθ; and a sinθ term remain in the 
potential energy expression. These terms can be eliminated 
from the expression by adding rotating masses, using a similar 
approach as described in the introduction [15, 16]. A possible 
embodiment of these rotating masses is given in Fig. 3. 
 Figure 3 shows a mechanism consisting of three masses and 
two rollers with radius rr. The rollers are connected such that 
only pure rolling of the top roller is possible relative to the 
bottom roller. This causes the connection link between the 
centers of the rollers to rotate through an angle θ for a rotation 
2θ of the top roller. With the masses m1 and m2 mounted on the 
top roller and the mass m3 on the extension of the connection 
link between the centers of the two rollers, the mass rotations 
are coupled and the total potential energy expression of these 
masses for a rotation 2θ of the top roller can be written as: 
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where K represents the constant terms in the expression and R2 
equals twice the roller radius rr. 
 

 With the potential energy expression of the mass mechanism 
containing the same products of rotation-dependent 
goniometric terms and constants as for the spring mechanism, it 
should be possible to achieve perfect static balance by 
mounting the mass-mechanism to the spring-mechanism as 
shown in Fig. 4. This is possible because the potential energy 
characteristic of the spring-mechanism given in Fig. 2 is not 

 
 

Figure 3. An unstable mechanism consisting of three masses and two 
rollers. Mass m1 and m2 are connected to the top roller. Mass m3 is 
connected to the connection link between the centres of the rollers. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The mechanisms given in Figs. 2 and 3 combined. The 
triangle-spring mechanism is as described in Fig. 2 only the apexes of 
the triangles are shifted apart with a distance lsh=2rr and α=β. 
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influenced by shifting apart or overlapping the apexes with a 
distance lsh=2rr provided that the shifting distance is 
compensated for in the free-length of the normal springs (=> 
free-length=l0i+lsh) and α=β [1, 6, 12-14, 16]. 
 In combining the mass and spring mechanism, the potential 
energy terms of both mechanisms can be summed and the 
following conditions for perfect static balance can be derived: 
 

 
( )
( )
( ) ( )
( ) 53022011

432221022011

32
2

2
2

1

11
2

2
2

1

sin2
cos2

2sin
2cos

gRmblCalC
RmRmRmgblCalC

gRmbCaC
gRmbCaC

=−
++=+

=−

−=+

α
α
α

α
    (6) 

Note that α=β thus γ=α=β and R2=2rr. 
 

 Figure 5 shows two possible ‘single mass’-spring 
mechanisms, directly derived from the described basic gravity-
spring balancer (Fig. 4). It is noted that for eq. (6) to remain 
valid, springs with free-length l01-lsh and l02-lsh have to be 
employed with overlapping the triangles (Fig. 5b and c) 
whereas springs with free-length l01+lsh and l02+lsh have to be 
employed with shifting them apart (Fig. 5a). The working 
model [13-15] (Fig.5c) functions quite satisfactorily. Provided 
it is placed on a horizontal base, the mass is in equilibrium 
throughout its range of motion while hysteresis is negligible. 
 The basic mechanism given in Fig. 4 allows for several other 
configurations of mass-spring mechanisms that enable perfect 
static balance. The thought is to zero out the cosine and sine 
terms in the potential energy expression of the (normal) spring-

mechanism (eq. (4)) with a combination of rotating masses (or 
ideal springs [16]). Since the potential energy expression of the 
normal spring-mechanism discussed, contains goniometric 
terms with both 2θ and θ dependencies, a coupling of two 
rotating masses is demanded to achieve this. This can be 
achieved with two rollers as described, but numerous different 
embodiments including gears, belts, or linkage type 
mechanisms can also be used. However, the use of rollers 
allows for a relative simple mechanism with little hysteresis 
during operation [10]. 

PERFECT 2DOF STATIC GRAVITY BALANCING 
Consider the cone-spring mechanism given in Fig. 6. The 
mechanism consists of two cones with equal apical angles of 
2α. The cones are interconnected with a spherical joint at their 
apexes. On the surfaces of the cones, six lever arms (a to c) are 
mounted such that their projections on the xy-plane have in-
between angles of 120° (with mechanism in neutral position). 
Three normal linear springs with stiffness C1, C2, C3 and free 
lengths l01, l02 and l03 respectively, are connected to the ends of 
respectively the lever arms a≠b≠c. The bottom cone and the 
xyz-coordinate system are considered fixed to the ground with 
the apex of the bottom cone and the origin of the coordinate 
system coinciding. The coordinate system is drawn outside of 
the apex for clarity reasons. 
 Note that the architecture of this mechanism is basically the 
same as the one shown in Fig. 1a but with mutual equal lever-
arms a≠b≠c, and two equal apical angles 2α of the cones. 
Furthermore the three employed ideal springs have been 

               
           (a)                     (b)       (c) 
 
Figure 5. Mechanisms as given in Fig. 4, but with: a) m2=0 and m3=0. b) m1=0; m2=0; α=0.25π; and R5=0, with triangles overlapped. c) Working 
prototype of b), where flexible bands are used to prevent the rollers from slipping [13-15]. 
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replaced with technical springs. In the course of this section the 
consequences of these actions are discussed, using a potential 
energy consideration. 
 Every position of the top cone relative to the bottom cone can 
be described by a rotation of the top cone about an arbitrary 
chosen axis in the xy-plane (passing through the spherical joint) 
followed by an axial rotation about its centerline (torsion 
rotation). In this section the potential energy expression of this 
three-spring mechanism will be derived for rotations of the top 
cone about an arbitrary chosen axis lying in the xy-plane. The 

mechanism is considered as follows: Instead of rotating the top 
cone about an arbitrary axis lying in the xy-plane, the 
mechanism –as a whole- is rotated through an (arbitrary 
chosen) angle φ about the z-axis (Fig. 6a). Subsequently the 
bottom cone is again considered fixed to the xyz-coordinate 
system and a rotation of 2θ is enforced on the top cone about 
the x-axis (Fig. 6b→6c).  
 With rotations 2θ of the top cone, it is seen that two mutual 
spring attachment points always move in one plane that is 
perpendicular to the axis of rotation or, for this consideration, 

 
(a) 

 
                   (b)               (c) 
Figure 6. Spatial spring-mechanism consisting of two cones, interconnected with a spherical joint in the apexes and three normal springs employed 
between the ends of levers a, b, and c. a) 3D and top view of the mechanism in neutral position. b)/ c) Projections of the spring mechanism on the 
yz-plane with: b) The mechanism in neutral position. c) The top cone of mechanism rotated through an angle 2θ about the x-axis. a*, b* and c* are 
the projections of the levers a, b and c on the yz-plane respectively. 
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parallel to the yz-plane. Therefore the distance between two 
mutual spring attachment points can be determined directly 
from the projection of the mechanism on the yz-plane. 
Considering that linear technical springs are employed, the 
potential energy of the mechanism is therefore given by: 
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with l1 to l3 the distance between a set of two spring attachment 
points. 
 

Figure 6 yields the following geometric relations: 
 

 )sin(2 1
*

1 ψ⋅⋅= al ; )sin(2 2
*

2 ψ⋅⋅= bl ; )sin(2 3
*

3 ψ⋅⋅= cl   (8) 

With θρπψ +−= 11 5.0 ;  θρπψ −−= 22 5.0 ; θρπψ −−= 33 5.0  

The sine terms in the equations can be written as: 
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Finally the angles ρi can be derived from: 
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Substituting eq. (9) and eq. (10) in eq. (8) gives: 
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Thus: 
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With these geometric relations determined, the total potential 
energy of this mechanism can be determined from to eq. (7). 
Substituting eq. (11) into eq. (7) and rearranging gives: 
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eq. (12) can be simplified to:  
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where K represents the constant terms in the equation. 
 

Knowing that:  
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it is seen that the φ-dependency can be eliminated from eq. (13) 
(condition for rotation symmetric mechanism). Rewriting of eq. 
(13) therefore gives: 
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where K represents the constant terms.  

 From eq. (14) it is readily seen that the potential energy of the 
mechanism is independent of the rotation 2θ of the top triangle 
if 2

3
2

2
2

1 cCbCaC ⋅=⋅=⋅ ; 2tan2 =α  and l0i=0 (note that the 

resulting mechanism then is basically the three-spring balancer 
shown in Fig. 1). If these static spring-to-spring balancing 
conditions are not satisfied, a cos2θ and a cosθ term remain in 
the expression. As was the case for the 1dof mechanism, these 
terms can be eliminated from the expression through the 
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addition of rotating masses. This can be achieved by coupling 
two inversed pendulums such that a rotation 2θ of one 
pendulum causes a rotation θ of the other pendulum. A possible 
embodiment of such a mechanism is given in Fig. 7a. 
 Figure 7a shows a mechanism consisting of a mass and two 
spheres with radius rs. The spheres are connected such that only 
rolling of the top sphere is possible relative to the bottom 
sphere. This causes the connection line between the centers of 
the spheres to rotate through an angle θ for a rotation 2θ of the 
top sphere. With the mass m mounted on the top sphere, it 
rotates about two pivots, such that a rotation 2θ of link R1 about 
the centre of the top sphere causes link R2 to rotate through an 
angle θ about the center of the bottom sphere. The total 
potential energy expression of these masses for a rotation 2θ of 
the top sphere therefore becomes: 
 

 KmgRmgRVmass +⋅+⋅= θθ cos2cos 21      (15) 

where K represents the constant terms and where R2 =2rs. 
 

 With the potential energy expression of the mass mechanism 
containing the same products of rotation-dependent 
goniometric terms and constants as for the spring mechanism, it 
should be possible to achieve perfect static balance by 
mounting the mass-mechanism to the spring-mechanism as 
shown in Fig. 6b-c. This is possible because the potential 
energy characteristic of the spring-mechanism given in Fig. 6 is 
not influenced by shifting apart or overlapping the apexes with 
a distance lsh=2rs provided the shifting/ overlapping distance is 
compensated for in the free-length of the springs (=> in this 
case the normal spring free-length therefore becomes: l0i+lsh) 
[1, 6, 12-14, 16]. 

The potential energy expression for the total mechanism (Fig. 
7c) then becomes: 
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033022011 lcClbClaC ⋅⋅=⋅⋅=⋅⋅ ; R2=2rs 

and where K represents the constant terms. 
 

 Equation (16) yields the following conditions for perfect 
gravity balance of the mechanism given in Fig. 7c: 
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aCmgR

=
−−=       (17) 

With 2
3

2
2

2
1 cCbCaC ⋅=⋅=⋅ ; 

033022011 lcClbClaC ⋅⋅=⋅⋅=⋅⋅  and 

R2=2rs. 
 

 Figure 8 shows a working model of the mechanism displayed 
in Fig. 7c. It should be noted that the spheres rely only on 
friction and spring tension forces to ensure a 2dof movement. 
This is because flexible bands could not be used, as was the 
case for the 1dof mechanism. The prototype incorporates six 
equal lever arms and three equal linear normal springs. 
Although the model worked quite satisfactorily when the 
correct balancing conditions were set, it is observed during 
experiments that a correct alignment is as necessary as it is 
difficult to obtain and sustain. This is of course because of the 
lack of hysteresis with the current rolling link embodiment and 
the non-holonomic nature of the contact. 
 The torsion stability, or rather torsion stiffness, of the 
prototype has been determined numerically, using a similar 

 

 
           (a)        (b)             (c) 
 
Figure 7. Conception of 2dof gravity balancer consisting of 6 levers, three normal springs and two cones, interconnected with a spherical joint in the 
apexes. The three-spring mechanism is as described in Fig. 6. 
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method as set out in the companion paper [16]. No single 
stability condition or stiffness expression could be derived 
(symbolically), therefore it is only remarked here that the 
prototype proved torsion stable in theory and, more 
importantly, in practice. If the described mechanism is actually 
going to be employed and torsion stability of the mechanism is 
an issue, this should be looked into further. 

CONCLUSION 
The use of normal springs in static balancing generally results 
in approximate balance or requires more complex adjustment 
mechanisms. In this paper several mechanisms that statically 
balance gravity acting on an inverted pendulum, with normal 
(non-zero free length) springs employed directly between the 
spring attachment points, have been described and working 
models were presented. This has been done for mechanisms 
employed with both a 1dof pivot (revolute joint) as well as for 
a 3dof pivot (spherical joint) of which the basic configurations 
are summarized in Fig. 9 together with the derived balancing 
conditions. 
 It has been shown that not satisfying the balancing conditions 
and replacing the ideal springs with normal springs of an 
initially static spring-to-spring balancer results in a potential 
energy expression with rotation dependent terms which can be 
perfectly zeroed out by means of rotating masses. However, to 
obtain perfect gravity balance, the two rotating segments 
always have to be coupled such that a rotation of 2θ of one 
segment causes a rotation θ of the other segment. This 
kinematic demand can be satisfied by stacking two rollers 
(1dof) -or spheres (2dof) in which a rotation 2θ of one roller -
or sphere relative to the other, causes a rotation θ of the 
connection line between the centers of the rollers (assuming 
pure rolling). Using this kinematic coupling of two rotating 
segments results in mechanisms that are relative easy to 
construct (compared to some other mechanisms employing 
technical springs), with minimal hysteresis during operation. 
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Torsion stiffness is mechanism dependent16 
 

(b) 
 
Figure 9. Overview of perfect static gravity balancing mechanisms with normal springs employed between the spring attachment points, with: 2α 
the apical angles of a triangle or cone on which the levers for the spring attachment points a to c are mounted; Ri segment lengths from which 
the distance from the center of gravity of a mass to a pivot can be determined; l0i the spring free-length; Ci the spring stiffness. a) 1dof gravity 
balancer. b) 2dof gravity balancer. 
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