67 research outputs found

    Dynamic structure factor and drag force in a one-dimensional strongly-interacting Bose gas at finite temperature

    Full text link
    We study the effect of thermal and quantum fluctuations on the dynamical response of a one-dimensional strongly-interacting Bose gas in a tight atomic waveguide. We combine the Luttinger liquid theory at arbitrary interactions and the exact Bose-Fermi mapping in the Tonks-Girardeau-impenetrable-boson limit to obtain the dynamic structure factor of the strongly-interacting fluid at finite temperature. Then, we determine the drag force felt by a potential barrier moving along the fluid in the experimentally realistic situation of finite barrier width and temperature.Comment: 13 pages, 11 figure

    Dipole mode of a strongly correlated one-dimensional Bose gas in a split trap: parity effect and barrier renormalization

    Full text link
    We consider an interacting, one-dimensional Bose gas confined in a split trap, obtained by an harmonic potential with a localized barrier at its center. We address its quantum-transport properties through the study of dipolar oscillations, which are induced by a sudden quench of the position of the center of the trap. We find that the dipole-mode frequency strongly depends on the interaction strength between the particles, yielding information on the classical screening of the barrier and on its renormalization due to quantum fluctuations. Furthermore, we predict a parity effect which becomes most prominent in the strongly correlated regime.Comment: 4 pages (3 figures) + 7 pages (4 figures) of supplemental materia

    Ground-state energy and excitation spectrum of the Lieb-Liniger model : accurate analytical results and conjectures about the exact solution

    Get PDF
    We study the ground-state properties and excitation spectrum of the Lieb-Liniger model, i.e. the one-dimensional Bose gas with repulsive contact interactions. We solve the Bethe-Ansatz equations in the thermodynamic limit by using an analytic method based on a series expansion on orthogonal polynomials developed in \cite{Ristivojevic} and push the expansion to an unprecedented order. By a careful analysis of the mathematical structure of the series expansion, we make a conjecture for the analytic exact result at zero temperature and show that the partially resummed expressions thereby obtained compete with accurate numerical calculations. This allows us to evaluate the density of quasi-momenta, the ground-state energy, the local two-body correlation function and Tan's contact. Then, we study the two branches of the excitation spectrum. Using a general analysis of their properties and symmetries, we obtain novel analytical expressions at arbitrary interaction strength which are found to be extremely accurate in a wide range of intermediate to strong interactions

    Resonant persistent currents for ultracold bosons on a lattice ring

    Full text link
    We consider a one-dimensional bosonic gas on a ring lattice, in the presence of a localized barrier, and under the effect of an artificial gauge field. By means of exact diagonalization we study the persistent currents at varying interactions and barrier strength, for various values of lattice filling. While generically the persistent currents are strongly suppressed in the Mott insulator phase, they show a resonant behaviour when the barrier strength becomes of the order of the interaction energy. We explain this phenomenon using an effective single-particle model. We show that this effect is robust at finite temperature, up the temperature scale where persistent currents vanish.Comment: 8 pages, 7 figures; added refs and Editors' tease

    Quantum Phase-Slip Junction Under Microwave Irradiation

    Full text link
    We consider the dynamics of a quantum phase-slip junction (QPSJ) -- a dual Josephson junction -- connected to a microwave source with frequency ωmw\omega_\textrm{mw}. With respect to an ordinary Josephson junction, a QPSJ can sustain dual Shapiro steps, consisting of well-defined current plateaus at multiple integers of eωmw/π e \omega_\textrm{mw} / \pi in the current-voltage (I-V) characteristic. The experimental observation of these plateaus has been elusive up to now. We argue that thermal as well as quantum fluctuations can smear the I-V characteristic considerably. In order to understand these effects, we study a current-biased QPSJ under microwave irradiation and connected to an inductive and resistive environment. We find that the effect of these fluctuations are governed by the resistance of the environment and by the ratio of the phase-slip energy and the inductive energy. Our results are of interest for experiments aimed at the observation of dual Shapiro steps in QPSJ devices for the definition of a new quantum current standard.Comment: 12 pages, 9 figures, comments and suggestions would be greatly appreciate

    Mode engineering with a one-dimensional superconducting metamaterial

    Full text link
    We propose a way to control the Josephson energy of a single Josephson junction embedded in one- dimensional superconducting metamaterial: an inhomogeneous superconducting loop, made out of a superconducting nanowire or a chain of Josephson junctions. The Josephson energy is renormalized by the electromagnetic modes propagating along the loop. We study the behaviour of the modes as well as of their frequency spectrum when the capacitance and the inductance along the loop are spatially modulated. We show that, depending on the amplitude of the modulation, the renormalized Josephson energy is either larger or smaller than the one found for a homogeneous loop. Using typical experimental parameters for Josepshon junction chains and superconducting nanowires, we conclude that this mode-engineering can be achieved with currently available metamaterials

    Optimal Persistent Currents for Interacting Bosons on a Ring with a Gauge Field

    Full text link
    We study persistent currents for interacting one-dimensional bosons on a tight ring trap, subjected to a rotating barrier potential, which induces an artificial U(1) gauge field. We show that, at intermediate interactions, the persistent current response is maximal, due to a subtle interplay of effects due to the barrier, the interaction and quantum fluctuations. These results are relevant for ongoing experiments with ultracold atomic gases on mesoscopic rings.Comment: 5 pages + supplemental material, 6 figure
    • …
    corecore