380 research outputs found

    Germ-line and somatic EPHA2 coding variants in lens aging and cataract

    Get PDF
    Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive

    Cat-Map: putting cataract on the map

    Get PDF
    Lens opacities, or cataract(s), may be inherited as a classic Mendelian disorder usually with early-onset or, more commonly, acquired with age as a multi-factorial or complex trait. Many genetic forms of cataract have been described in mice and other animal models. Considerable progress has been made in mapping and identifying the genes and mutations responsible for inherited forms of cataract, and genetic determinants of age-related cataract are beginning to be discovered. To provide a convenient and accurate summary of current information focused on the increasing genetic complexity of Mendelian and age-related cataract we have created an online chromosome map and reference database for cataract in humans and mice (Cat-Map)

    Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens.

    Get PDF
    The mature eye lens contains a surface layer of epithelial cells called the lens epithelium that requires a functional mitochondrial population to maintain the homeostasis and transparency of the entire lens. The lens epithelium overlies a core of terminally differentiated fiber cells that must degrade their mitochondria to achieve lens transparency. These distinct mitochondrial populations make the lens a useful model system to identify those genes that regulate the balance between mitochondrial homeostasis and elimination. Here we used an RNA sequencing and bioinformatics approach to identify the transcript levels of all genes expressed by distinct regions of the lens epithelium and maturing fiber cells of the embryonic Gallus gallus (chicken) lens. Our analysis detected more than 15,000 unique transcripts expressed by the embryonic chicken lens. Of these, more than 3000 transcripts exhibited significant differences in expression between lens epithelial cells and fiber cells. Multiple transcripts coding for separate mitochondrial homeostatic and degradation mechanisms were identified to exhibit preferred patterns of expression in lens epithelial cells that require mitochondria relative to lens fiber cells that require mitochondrial elimination. These included differences in the expression levels of metabolic (DUT, PDK1, SNPH), autophagy (ATG3, ATG4B, BECN1, FYCO1, WIPI1), and mitophagy (BNIP3L/NIX, BNIP3, PARK2, p62/SQSTM1) transcripts between lens epithelial cells and lens fiber cells. These data provide a comprehensive window into all genes transcribed by the lens and those mitochondrial regulatory and degradation pathways that function to maintain mitochondrial populations in the lens epithelium and to eliminate mitochondria in maturing lens fiber cells

    Noncoding variation of the gene for ferritin light chain in hereditary and age-related cataract

    Get PDF
    PURPOSE: Cataract is a clinically and genetically heterogeneous disorder of the ocular lens and an important cause of visual impairment. The aim of this study was to map and identify the gene underlying autosomal dominant cataract segregating in a four-generation family, determine the lens expression profile of the identified gene, and test for its association with age-related cataract in a case-control cohort. METHODS: Genomic DNA was prepared from blood leukocytes, and genotyping was performed by means of single-nucleotide polymorphism markers and microsatellite markers. Linkage analyses were performed using the GeneHunter and MLINK programs, and mutation detection was achieved by dideoxy cycle sequencing. Lens expression studies were performed using reverse-transcription polymerase chain reaction (RT–PCR) and in situ hybridization. RESULTS: Genome-wide linkage analysis with single nucleotide polymorphism markers in the family identified a likely disease-haplotype interval on chromosome 19q (rs888861-[~17Mb]-rs8111640) that encompassed the microsatellite marker D19S879 (logarithm of the odds score [Z]=2.03, recombination distance [θ]=0). Mutation profiling of positional-candidate genes detected a heterozygous, noncoding G-to-T transversion (c.-168G>T) located in the iron response element (IRE) of the gene coding for ferritin light chain (FTL) that cosegregated with cataract in the family. Serum ferritin levels were found to be abnormally elevated (~fourfold), without evidence of iron overload, in an affected family member; this was consistent with a diagnosis of hereditary hyperferritinemia-cataract syndrome. No sequence variations located within the IRE were detected in a cohort of 197 cases with age-related cataract and 102 controls with clear lenses. Expression studies of human FTL, and its mouse counterpart FTL1, in the lens detected RT–PCR amplicons containing full-length protein-coding regions, and strong in situ localization of FTL1 transcripts to the lens equatorial epithelium and peripheral cortex. CONCLUSIONS: The data are consistent with robust transcription of FTL in the lens, and suggest that whereas variations clustered in the IRE of the FTL gene are directly associated with hereditary hyperferritinemia-cataract syndrome, such IRE variations are unlikely to play a significant role in the genetic etiology of age-related cataract

    Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases.

    Get PDF
    PurposeThis study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families.MethodsLarge consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon-intron boundaries of RP1 were sequenced to identify the causal mutation.ResultsThe ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples.ConclusionsThese results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families

    Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic retinopathy (DR) is classically defined as a microvasculopathy that primarily affects the small blood vessels of the inner retina as a complication of diabetes mellitus (DM).It is a multifactorial disease with a strong genetic component. The aim of this study is to investigate the association of a set of nine candidate genes with the development of diabetic retinopathy in a South Indian cohort who have type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>Seven candidate genes (<it>RAGE, PEDF, AKR1B1, EPO, HTRA1, ICAM </it>and <it>HFE</it>) were chosen based on reported association with DR in the literature. Two more, <it>CFH </it>and ARMS2, were chosen based on their roles in biological pathways previously implicated in DR. Fourteen single nucleotide polymorphisms (SNPs) and one dinucleotide repeat polymorphism, previously reported to show association with DR or other related diseases, were genotyped in 345 DR and 356 diabetic patients without retinopathy (DNR). The genes which showed positive association in this screening set were tested further in additional sets of 100 DR and 90 DNR additional patients from the Aravind Eye Hospital. Those which showed association in the secondary screen were subjected to a combined analysis with the 100 DR and 100 DNR subjects previously recruited and genotyped through the Sankara Nethralaya Hospital, India. Genotypes were evaluated using a combination of direct sequencing, TaqMan SNP genotyping, RFLP analysis, and SNaPshot PCR assays. Chi-square and Fisher exact tests were used to analyze the genotype and allele frequencies.</p> <p>Results</p> <p>Among the nine loci (15 polymorphisms) screened, SNP rs2070600 (G82S) in the <it>RAGE </it>gene, showed significant association with DR (allelic P = 0.016, dominant model P = 0.012), compared to DNR. SNP rs2070600 further showed significant association with DR in the confirmation cohort (P = 0.035, dominant model P = 0.032). Combining the two cohorts gave an allelic P < 0.003 and dominant P = 0.0013). Combined analysis with the Sankara Nethralaya cohort gave an allelic P = 0.0003 and dominant P = 0.00011 with an OR = 0.49 (0.34 - 0.70) for the minor allele. In <it>HTRA1</it>, rs11200638 (G>A), showed marginal significance with DR (P = 0.055) while rs10490924 in LOC387715 gave a P = 0.07. No statistical significance was observed for SNPs in the other 7 genes studied.</p> <p>Conclusions</p> <p>This study confirms significant association of one polymorphism only (rs2070600 in <it>RAGE</it>) with DR in an Indian population which had T2DM.</p

    CDKN2B Polymorphism Is Associated with Primary Open-Angle Glaucoma (POAG) in the Afro-Caribbean Population of Barbados, West Indies

    Get PDF
    The purpose of this study was to confirm previously reported associations of common variants in or near CDC7/TGFBR3, ZP4, SRBD1, ELOVL5, CAV1/CAV2, TLR4, CDKN2B, CDKN2B-AS1, ATOH7, PLXDC2, TMTC2, SIX1, and CARD10, with primary open angle glaucoma (POAG) in the Afro-Caribbean population of Barbados, West Indies. A total of 437 unrelated subjects from the Barbados Family Study of Open Angle Glaucoma (BFSG), including 272 with POAG and 165 unaffected individuals were included in this study. Eighteen SNPs were genotyped by using the multiplex SNaPshot method. Allelic, genotypic and model-based (dominant, recessive, and additive) associations of the SNPs with POAG were analyzed using Chi-squared tests and logistic regression. SNP rs1063192 (near CDKN2B) was found to be significantly associated with POAG (allelic P = 0.0008, genotypic P = 0.0029), and the minor allele C of rs1063192 was protective against POAG (OR  = 0.39; 95%CI  = 0.22−0.69). Suggestive association was also noted for rs7916697 (near ATHO7, allelic P  = 0.0096, genotypic P = 0.01) with the minor allele being protective (OR  = 0.67; 95% CI  = 0.50−0.91), although this finding did not withstand correction for multiple testing. However, a significant interactive effect on POAG risk was identified between rs1063192 and rs7916697 (P-interaction  = 2.80×10−5). Individuals with the rs1063192 protective genotype CC or CT and also rs7916697 genotypes GG or GA show a significantly decreased risk of POAG (OR = 0.17, 95%CI: 0.07−0.41). Our study confirms the significant association between SNP rs1063192 (CDKN2B, previously shown to influence vertical cup-to-disc ratio and POAG at 9p21) and POAG in the Afro-Caribbean population of Barbados. The minor allele of rs1063192 interacts with that of rs7916697 (ATOH7)) to reduce POAG risk. Our results also suggest that rs1063912 is a common protective variant for POAG in populations of African as well as European descent

    Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases.

    Get PDF
    PurposeTo identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases.MethodsSeven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon-intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect.ResultsThe ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A&gt;G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A&gt;C; and a novel missense variation in exon 15, c.1561C&gt;T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p&lt;10(-6)) that affected individuals inherited the causal mutation from a common ancestor.ConclusionsPathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families
    corecore