483 research outputs found
Generation of a short fibre biocomposite representative volume element
One of the greatest challenge in working with natural fibre composites is the large variation in mechanical properties that result from the geometric inconsistency amongst fibres. Traditional design tools and models are unable to accurately incorporate this non-homogeneity to predict the resulting local behaviour of biocomposite materials. The following paper presents a methodology to generate a representative volume element (RVE) to simulate the material microstructure of short fibre composites, with the intent of modelling the popular class of short fibre biocomposites materials. The capabilities of a range of particle packing algorithms used in literature are compared in terms of the maximum volume fraction they have been able to achieve and for what fibre length to diameter aspect ratio. The methodology is able to account for the characteristics of fibre geometry samples, according to their probability density functions (PDFs). The RVE generation strategy imposes periodic boundary conditions and fibres are declared invalid if an intersection between fibres is detected. The effect of different PDFs on the resulting RVE are discussed. An RVE populated with data following a Weibull distribution is compared to that from normally distributed data with an equal mean but varied standard deviations. Using a Weibull distribution to simulate the characteristics of an RVE requires a significantly higher number of fibres than any comparable normal distribution, due to the skewness of the data towards large values at low probabilities. The highest volume fraction achieved was 40% for an RVE containing fibres with lengths distributed according to a Weibull distribution and aspect ratios of 15. The future intent of this work is to perform finite element analysis on RVE samples with a range of varied microstructure characteristics to determine the effect on overall composite properties, which will provide new insights on how best to formulate short fibre compounds
Cavovarus deformity in Charcot-Marie-Tooth disease: is there a hindfoot equinus deformity that needs treatment?
Background: Charcot-Marie-Tooth disease (CMT), one of the most common hereditary neurologic disorders, often results in debilitating cavovarus foot deformities. The deformities are still not fully understood, and the treatment recommendations are consequently heterogeneous, often including calf muscle or Achilles tendon lengthening. Methods: We examined 40 patients (80 feet) with CMT and bilateral cavovarus deformities (19 men and 21 women, mean age 33.6 ± 14.6 years) and the feet of a healthy control population of 13 individuals (7 men and 6 women, mean age 43.9 ± 10.8 years). In all cases 3D instrumented gait analysis results with both conventional Plug-in-Gait analysis and the Heidelberg Foot Measurement Method (HFMM) were used to determine the sagittal plane kinematics, dorsi-plantar flexion (DPF), tibio-talar dorsiflexion (TTDF), and medial arch angle (MAA), and the results of patients and the control group were compared using the 2 methods. Decreased and increased dorsiflexion using TTDF was defined as 1 standard deviation below or above the mean of the control. Comparisons were done using descriptive statistics, the Pearson correlation coefficient and ANOVA. Results: The TTDF was found to be decreased in 18 of the 80 feet examined (22.5 %), normal in 31 feet (38.75 %), and increased in 31 feet (38.75 %). The Pearson coefficient showed a positive correlation with R = 0.765, p < 0.001 between decreased TTDF values found by HFMM and decreased DPF values found with conventional Plug-in-Gait analysis, but a very weak correlation in patients with normal TTDF (R = -0.118) and increased TTDF (R = 0.078). Also, in patients with decreased TTDF values, there was a weak to moderate correlation with the MAA (R = 0.335), but no correlation between the MAA and DPF (R = 0.023). Conclusions: The HFMM, unlike the conventional Plug-in-Gait analysis, distinguishes between the segments of the foot in foot deformities and facilitates evaluation of the hindfoot equinus component in patients with CMT and cavovarus deformity. Although there is a significant correlation between decreased TTDF with HFMM and decreased DPF with conventional Plug-in-Gait analysis, this correlation was not seen in patients with normal or increased TTDF values. Conventional Plug-in-Gait analysis alone does not indicate if an increased plantar flexion deformity is the result of either a cavus deformity or hindfoot equinus deformity, which limits its usefulness in assisting in treatment decision making
The variable magnetic field of V889 Her and the challenge of detecting exoplanets around young Suns using Gaussian process regression
Discovering exoplanets orbiting young Suns can provide insight into the
formation and early evolution of our own solar system, but the extreme magnetic
activity of young stars obfuscates exoplanet detection. Here we monitor the
long-term magnetic field and chromospheric activity variability of the young
solar analogue V889 Her, model the activity-induced radial velocity variations
and evaluate the impacts of extreme magnetism on exoplanet detection
thresholds. We map the magnetic field and surface brightness for 14 epochs
between 2004 and 2019. Our results show potential 3-4 yr variations of the
magnetic field which evolves from weak and simple during chromospheric activity
minima to strong and complex during activity maxima but without any polarity
reversals. A persistent, temporally-varying polar spot coexists with weaker,
short-lived lower-latitude spots. Due to their different decay time-scales,
significant differential rotation and the limited temporal coverage of our
legacy data, we were unable to reliably model the activity-induced radial
velocity using Gaussian Process regression. Doppler Imaging can be a useful
method for modelling the magnetic activity jitter of extremely active stars
using data with large phase gaps. Given our data and using Doppler Imaging to
filter activity jitter, we estimate that we could detect Jupiter-mass planets
with orbital periods of 3 d. A longer baseline of continuous observations
is the best observing strategy for the detection of exoplanets orbiting highly
active stars.Comment: Accepted by MNRA
Unveiling the internal structure and formation history of the three planets transiting HIP 29442 (TOI-469) with CHEOPS
Multiplanetary systems spanning the radius valley are ideal testing grounds for exploring the different proposed explanations for the observed bimodality in the radius distribution of close-in exoplanets. One such system is HIP 29442 (TOI-469), an evolved K0V star hosting two super-Earths and one sub-Neptune. We observed HIP 29442 with CHEOPS for a total of 9.6 days, which we modelled jointly with two sectors of TESS data to derive planetary radii of 3.410 ± 0.046, 1.551 ± 0.045, and 1.538 ± 0.049 R⊕ for planets b, c, and d, which orbit HIP 29442 with periods of 13.6, 3.5, and 6.4 days, respectively. For planet d this value deviates by more than 3σ from the median value reported in the discovery paper, leading us to conclude that caution is required when using TESS photometry to determine the radii of small planets with low per-transit signal-to-noise ratios and large gaps between observations. Given the high precision of these new radii, combining them with published RVs from ESPRESSO and HIRES provides us with ideal conditions to investigate the internal structure and formation pathways of the planets in the system. We introduced the publicly available code plaNETic, a fast and robust neural network-based Bayesian internal structure modelling framework. We then applied hydrodynamic models to explore the upper atmospheric properties of these inferred structures. Finally, we identified planetary system analogues in a synthetic population generated with the Bern model for planet formation and evolution. Based on this analysis, we find that the planets likely formed on opposing sides of the water iceline from a protoplanetary disk with an intermediate solid mass. We finally report that the observed parameters of the HIP 29442 system are compatible with a scenario where the second peak in the bimodal radius distribution corresponds to sub-Neptunes with a pure H/He envelope and with a scenario with water-rich sub-Neptunes
The K2-24 planetary system revisited by CHEOPS
The planetary system K2-24 is composed of two transiting low-density Neptunians locked in an almost perfect 2:1 resonance and showing large transit time variations (TTVs), and it is an excellent laboratory to search for signatures of planetary migration. Previous studies performed with K2, Spitzer, and RV data tentatively claimed a significant non-zero eccentricity for one or both planets, possibly high enough to challenge the scenario of pure disk migration through resonant capture. With 13 new CHEOPS light curves (seven of planet b, six of planet c), we carried out a global photometric and dynamical re-analysis by including all the available literature data as well. We obtained the most accurate set of planetary parameters to date for the K2-24 system, including radii and masses at 1% and 5% precision (now essentially limited by the uncertainty on stellar parameters) and non-zero eccentricities eb = 0.0498−0.0018+0.0011, ec = 0.0282−0.0007+0.0003 detected at very high significance for both planets. Such relatively large values imply the need for an additional physical mechanism of eccentricity excitation during or after the migration stage. Also, while the accuracy of the previous TTV model had drifted by up to 0.5 days at the current time, we constrained the orbital solution firmly enough to predict the forthcoming transits for the next ~15 years, thus enabling efficient follow-up with top-level facilities such as JWST or ESPRESSO
DI Diesel Engine Combustion Visualized by Combined Laser Techniques
In this work we demonstrate that the progress of the combustionccycle in a four-cylinder (in-line) 1.9 1 direct injection Diesel engine can be studied effectively using different laser visualization techniques. Direct optical access to the piston bowl was facilitated by inserting quartz windows in one of the pistons. The flow field at the time of injection was characterized by seeding the flow and illuminating the piston bowl with a laser light sheet. Fuel spray development, auto-ignition and flame propagation in a Diesel cycle were followed by laser shadowgraphy and high speed cinematography while simultaneous laser induced fluorescence (LIF) and Mie scattering images were taken to distinguish the fuel distribution in the liquid and vapor phase. In addition, two dimensional distributions of OH and NO, formed during n-heptane/air combustion in the same engine, were recorded in the pressure range 5 to 50 bar by LIF following narrowband excitation using tunable excimer lasers. Finally, further work, designed to obtain quantitative images and hence data for comparison with model calculations, is outlined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86790/1/Sick50.pd
Transit-timing variations in the AU Mic system observed with CHEOPS
Context. AU Mic is a very active M dwarf star with an edge-on debris disk and two known transiting sub-Neptunes with a possible third planetary companion. The two transiting planets exhibit significant transit-timing variations (TTVs) that are caused by the gravi tational interaction between the bodies in the system.
Aims. Using photometrical observations taken with the CHaracterizing ExOPlanet Satellite (CHEOPS), we aim to constrain the plan etary radii, the orbital distances, and the periods of AU Mic b and c. Furthermore, our goal is to determine the superperiod of the TTVs for AU Mic b and to update the transit ephemeris for both planets. Additionally, based on the perceived TTVs, we study the possible presence of a third planet in the system.
Methods. We conducted ultra-high precision photometric observations with CHEOPS in 2022 and 2023. We used Allesfitter to fit the planetary transits and to constrain the planetary and orbital parameters. We combined our new measurements with results from previous years to determine the periods and amplitudes of the TTVs. We applied dynamical modelling based on TTV measurements from the 2018–2023 period to reconstruct the perceived variations.
Results. We found that the orbital distances and periods for AU Mic b and c agree with the results from previous works. However, the values for the planetary radii deviate slightly from previous values, which we attribute to the effect of spots on the stellar surface. AU Mic c showed very strong TTVs, with transits that occurred ∼80 minutes later in 2023 than in 2021. Through a dynamical analysis of the system, we found that the observed TTVs can be explained by a third planet with an orbital period of ∼12.6 days and a mass of 0.203−0.024+0.022 M⊕. We explored the orbital geometry of the system and found that AU Mic c has a misaligned retrograde orbit. The limited number of AU Mic observations prevented us from determining the exact dynamical configuration and planetary parameters. Further monitoring of the system with CHEOPS might help to improve these results
The CHEOPS view of the climate of WASP-3 b
Context. Hot Jupiters are giant planets subject to intense stellar radiation. The physical and chemical properties of their atmosphere make them the most amenable targets for atmospheric characterization.
Aims. In this paper we analyze the photometry collected during the secondary eclipses of the hot Jupiter WASP-3 b by CHEOPS, TESS, and Spitzer. Our aim is to characterize the atmosphere of the planet by measuring the secondary eclipse depth in several passbands and constrain the planetary dayside spectrum.
Methods. We updated the radius and the ephemeris of WASP-3 b by analyzing the transit photometry collected by CHEOPS and TESS. We also analyzed the CHEOPS, TESS, and Spitzer photometry of the occultations of the planet, measuring the eclipse depth at different wavelengths.
Results. Our update of the stellar and planetary properties is consistent with previous works. The analysis of the occultations returns an eclipse depth of 92±21 ppm in the CHEOPS passband, 83±27 ppm for TESS, and >2000 ppm in the IRAC 1-2-4 Spitzer passbands. Using the eclipse depths in the Spitzer bands, we propose a set of likely emission spectra that constrain the emission contribution in the CHEOPS and TESS passbands to approximately a few dozen parts per million. This allowed us to measure a geometric albedo of 0.21±0.07 in the CHEOPS passband, while the TESS data lead to a 95% upper limit of ∼0.2.
Conclusions. WASP-3 b belongs to the group of ultra-hot Jupiters that are characterized by a low Bond albedo (<0.3±0.1), as predicted by different atmospheric models. On the other hand, it seems to efficiently recirculate the absorbed stellar energy, which is not typical for similar, highly irradiated planets. To explain this inconsistency, we propose that other energy recirculation mechanisms are at play besides advection (for example, the dissociation and recombination of H2). Another possibility is that the observations in different bandpasses probe different atmospheric layers; this would make the atmospheric analysis difficult without an appropriate modeling of the thermal emission spectrum of WASP-3 b, which is not feasible with the limited spectroscopic data available to date
Normalization of Red Cell Enolase Level Following Allogeneic Bone Marrow Transplantation in a Child with Diamond-Blackfan Anemia
We describe a girl with Diamond-Blackfan anemia with accompanying red cell enolase deficiency. At the age of 9 yr old, the patient received allogeneic bone marrow transplantation from her HLA-identical sister who had normal red cell enolase activity. While the post transplant DNA analysis with short tandem repeat has continuously demonstrated a stable mixed chimerism on follow-up, the patient remains transfusion independent and continues to show a steady increase in red cell enolase activity for over two and a half years following bone marrow transplantation
- …
