6 research outputs found
Ambient observations of dimers from terpene oxidation in the gas phase : Implications for new particle formation and growth
We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10(-15) to 10(-6)mu gm(-3) (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10(-3) to 10(-2)mu gm(-3) (similar to 10(6)-10(7)moleculescm(-3)) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of similar to 5% to early stage particle growth from the similar to 60 gaseous dimer compounds. Plain Language Summary Atmospheric aerosol particles influence climate and air quality. We present new insights into how emissions of volatile organic compounds from trees are transformed in the atmosphere to contribute to the formation and growth of aerosol particles. We detected for the first time over a forest, a group of organic molecules, known to grow particles, in the gas phase at levels far higher than expected. Previous measurements had only measured them in the particles. This finding provides guidance on how models of aerosol formation and growth should describe their appearance and fate in the atmosphere.Peer reviewe
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
New-particle formation is a major contributor to urban smog, but how it occurs in cities is often puzzling. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms
Holocene climatic and environmental changes inferred from midge records (Diptera : Chironomidae, Chaoboridae, Ceratopogonidae) at Lake Berkut, southern Kola Peninsula, Russia
A radiocarbon-dated sediment sequence from Lake Berkut in the southern part of the Kola Peninsula, northwest Russia, was investigated by means of midge analysis in order to reconstruct the Holocene climatic and environmental history of the region. Past mean July air temperatures at the study site and hypolimnetic oxygen contents of the lake water were inferred from chironomid-based transfer functions. The early Holocene (c. 10 100 - 8400 cal. yr BP) is characterized by summer temperatures and hypolimnetic oxygen concentrations broadly similar to present-day conditions. The midge records give evidence of a lake- level fall at c. 7000 cal. yr BP, resulting in weakened thermal stratification of the lake water, and improvement of the hypolimnetic oxygen conditions. After c. 4000 cal. yr BP midge assemblages suggest a lake- level rise related to increased effective moisture. A secondary mid-Holocene climatic optimum with inferred mean July air temperatures of c. 12.1 degrees C was recorded between 6000 and 4400 cal. yr BP, followed by minimum values (c. 11.3 degrees C) between 3500 and 1500 cal. yr BP, accompanied by the onset of natural acidification of the lake. The late-Holocene midge assemblages suggest weakly acidic conditions, low hypolimnetic oxygen contents and a general warming trend during the last c. 1500 years, although paludification and natural acidification may have influenced the temperature reconstruction at this stage. However, the modern chironomid-inferred mean July air temperature (12.5 degrees C) is consistent with meteorological data from a nearby station. In general, the midge records reflect relatively warm and moist conditions at Lake Berkut before c. 7000 cal. yr BP, a relatively warm and dry climate at c. 7000 - 4000 cal. yr BP, and a shift to cooler and wetter climatic conditions in the region after c. 4000 cal. yr BP