20 research outputs found

    Correlations between dynamic fragility, activation energy and glass transition temperature in polymeric composite materials: An overview from literature

    Get PDF
    Here, it is compiled data from literature for glass transition temperature (Tg) and activation energy (Ea) for different types of polymeric composite materials. A correlation among both parameters and dynamic mechanical curves is analyzed in terms of reinforcement effect and its correlation with the glassy and elastomeric moduli, as well the wideness of the main transition region. Besides, all results are discussed in terms of dynamic fragility. The results indicate that the glass transition temperature has not a direct relation with reinforcement effect promoted both in the glassy and/or elastomeric moduli. Moreover, the dynamic fragility concept seems do not be applied in polymeric composite materials since in the glass transition region the format of the storage, loss and tan delta curves vary strongly, depending on the specific polymeric composite material family

    Combined hygrothermal aging and mechanical loading effect on unidirectional glass/epoxy composites

    Get PDF
    Composites are subjected to different use conditions. Hence, the mechanical properties under different aging conditions are crucial in the composite field. This study aims to investigate the aging effect of a glass/epoxy unidirectional composite in three distinct conditions: mechanical, hygrothermal (hot water), and combined (mechanical and hygrothermal) aging. The composites in the longitudinal [0°] and transversal [90°] directions were molded by RTM with a 37% volume fraction. The aging effects on tensile, compressive, shear, short-beam properties, and dynamic-mechanical characteristics, in 0° and 90° fiber direction, were studied. The aging conditions are affected differently, depending on the property analyzed. Comparing aged and non-aged composites, the tensile (from 380 GPa to 140 GPa and from 80 GPa to 40 GPa for non-aged and combined aging in 0° and 90° directions, respectively) and compressive strength (from 250 MPa to 50 MPa and from 100 MPa to 25 MPa for non-aged and combined aging in 0° and 90° directions, respectively) showed greater relative drop than the elastic modulus (a decrease of 3–4 GPa for all aging analyzed compared to the no-aged composites) due to a deleterious effect on the interface and the chemical aging present in the polymeric matrix attenuates the deleterious effect on it. Besides, the properties measured in the 0° direction were more affected than in the 90° direction with the combined aging the most affected property

    Caracterização mecânica e dinâmico-mecânica de compósitos híbridos vidro/sisal moldados por RTM

    No full text
    O presente trabalho tem como objetivo avaliar o desempenho de compósitos poliméricos híbridos vidro/sisal através de ensaios físico (densidade), mecânicos (tração, flexão e impacto) e temo dinâmico-mecânico (DMTA). Um molde de transferência de resina (RTM) foi fabricado para a moldagem dos compósitos. Compósitos híbridos com diferentes frações volumétricas de reforço e diferentes razões entre o volume de fibra de vidro e de sisal foram estudados. Também foram analisados diferentes tamanhos de fibra. A densidade dos compósitos fabricados foi comparada com a predição teórica, mostrando estar de acordo com a regra das misturas. Os resultados obtidos nos ensaios de flexão e impacto demonstraram que as propriedades avaliadas, de uma maneira geral, foram sempre maiores com maior teor total de reforço, enquanto que no ensaio de tração não houve variação significativa nas propriedades avaliadas. Pela análise termo dinâmico-mecânica observou-se um aumento tanto nos módulos de armazenamento como no de perda, assim como um deslocamento para maiores temperaturas da região de transição vítrea com maiores teores de fibra de vidro e com maior volume de fibra nos compósitos. Também houve aumento na efetividade do reforço e na energia de ativação calculada. O tamanho da fibra não modificou significativamente o comportamento observado nas análises. O fator de adesão calculado dos compósitos aumentou com a adição da fibra de vidro, o que significa que a equação utilizada não se aplica para este sistema e que outros fatores, além da adesão contribuem para a dissipação de energia dos compósitos.The present work aims to evaluate the performance of glass/sisal hybrid composites by physical (density), mechanical (tensile, flexural and impact) and dynamical-mechanical thermal analysis (DMTA). A resin transfer molding (RTM) mold was built for the production of the composites. Hybrid composites with different fiber loadings and different overall volume fractions between glass and sisal were studied. The effect of the fiber length has also been investigated. The densities of the composites were compared with the theoretical values, showing agreement with the rule of mixtures. The results obtained in the flexural and impact analysis revealed that, in general, the properties were always higher for higher overall reinforcement content, while for the tensile properties the results revealed no clear trend in the properties evaluated. By DMTA, an increase in storage and loss modulus was found, as well as a shift to higher values for higher glass loading and overall fiber volume. It was also noticed an increase in the efficiency of the filler and in the calculated activation energy. The fiber length did not significantly change the results observed in all analysis carried out in this work. The calculated adhesion factor increased for higher glass loadings, meaning that the equation may not be applied for this system and there are other factors, besides adhesion influencing energy dissipation of the composites

    Comportamento térmico de fibras vegetais e propriedades dinâmico-mecânicas de compósitos poliméricos com fibra de sisal

    Get PDF
    O presente trabalho tem como objetivo avaliar a degradação térmica e a cinética de decomposição de diferentes fibras vegetais. Os modelos de Kissinger, Friedman e Flynn- Wall-Ozawa foram utilizados para determinação dos parâmetros de Arrhenius. Os mecanismos de degradação no estado sólido foram determinados utilizando o método de Criado. Os resultados indicaram que as energias de ativação aparentes podem estar mais relacionadas com a dependência exponencial da taxa de reações heterogêneas do que com a energia necessária para romper ligações, o qual é mais comumente utilizado. O fator de frequência se mostrou independente da taxa de aquecimento utilizada. As curvas de Criado indicaram dois diferentes mecanismos de degradação para todas as fibras: difusão e nucleação randômica. Ainda, algumas técnicas analíticas (XRD e FTIR) foram utilizadas visando corroborar os resultados obtidos. O teor de cristalinidade como calculado por XRD e por FTIR demonstraram não possuir uma correlação com a estabilidade térmica. Ainda, o comportamento térmico e o mecanismo de degradação não mostraram ser influenciados pelos componentes lignocelulósicos das fibras, com exceção do buriti e do sisal. Por fim, as fibras exibiram um efeito de compensação, i.e. maiores valores de energia de ativação levaram a maiores fatores de frequência. Por fim, uma das fibras estudadas (de sisal) foi utilizada em um compósito a fim de avaliar seu desempenho dinâmico-mecânico. Os compósitos mostraram uma queda de propriedade em função da temperatura, que foi menos acentuada para compósitos com maior teor de fibra. As curvas de tan delta se mostraram menores para compósitos com maiores teores de fibra, o que pode ser indicativo de menor dissipação de energia devido a uma maior área de interface polímero/fibra.This study has the aim of evaluating thermal degradation and the decomposition kinetics of different vegetal fibers. Kissinger, Friedman and Flynn-Wall-Ozawa models were used to determine the Arrhenius parameters. The degradation mechanisms in solid state were determined using Criado method. The results indicate that the apparent activation energies can be more associated with the exponential dependence of the heterogeneous reaction rate than with the energy necessary to break bonds, which is more commonly used. The frequency factors showed to be independent of the heating rate used. Criado curves indicated two different degradation mechanisms for all fibers: diffusion and random nucleation. Also, some analytic techniques (XRD and FTIR) were used aiming to corroborate the results obtained. The crystallinity content as calculated by XR and by FTIR showed no correlation with the thermal stability. Moreover, the thermal behavior and the degradation mechanism were not influenced by the lignocellulosic components of the fibers, i.e. higher activation energy values lead to higher frequency factors. One of the studied fibers (sisal) was used in a polymeric composite aiming to evaluate its dynamic mechanical behavior. The composites showed a decrease in properties as a function of the temperature, which was less accentuated for composites containing higher fiber content. Tan delta curves were lower for composites containing higher fiber content, which can be indicative of lower energy dissipation due to a greater area of polymer/fiber interface

    Caracterização mecânica e dinâmico-mecânica de compósitos híbridos vidro/sisal moldados por RTM

    No full text
    O presente trabalho tem como objetivo avaliar o desempenho de compósitos poliméricos híbridos vidro/sisal através de ensaios físico (densidade), mecânicos (tração, flexão e impacto) e temo dinâmico-mecânico (DMTA). Um molde de transferência de resina (RTM) foi fabricado para a moldagem dos compósitos. Compósitos híbridos com diferentes frações volumétricas de reforço e diferentes razões entre o volume de fibra de vidro e de sisal foram estudados. Também foram analisados diferentes tamanhos de fibra. A densidade dos compósitos fabricados foi comparada com a predição teórica, mostrando estar de acordo com a regra das misturas. Os resultados obtidos nos ensaios de flexão e impacto demonstraram que as propriedades avaliadas, de uma maneira geral, foram sempre maiores com maior teor total de reforço, enquanto que no ensaio de tração não houve variação significativa nas propriedades avaliadas. Pela análise termo dinâmico-mecânica observou-se um aumento tanto nos módulos de armazenamento como no de perda, assim como um deslocamento para maiores temperaturas da região de transição vítrea com maiores teores de fibra de vidro e com maior volume de fibra nos compósitos. Também houve aumento na efetividade do reforço e na energia de ativação calculada. O tamanho da fibra não modificou significativamente o comportamento observado nas análises. O fator de adesão calculado dos compósitos aumentou com a adição da fibra de vidro, o que significa que a equação utilizada não se aplica para este sistema e que outros fatores, além da adesão contribuem para a dissipação de energia dos compósitos.The present work aims to evaluate the performance of glass/sisal hybrid composites by physical (density), mechanical (tensile, flexural and impact) and dynamical-mechanical thermal analysis (DMTA). A resin transfer molding (RTM) mold was built for the production of the composites. Hybrid composites with different fiber loadings and different overall volume fractions between glass and sisal were studied. The effect of the fiber length has also been investigated. The densities of the composites were compared with the theoretical values, showing agreement with the rule of mixtures. The results obtained in the flexural and impact analysis revealed that, in general, the properties were always higher for higher overall reinforcement content, while for the tensile properties the results revealed no clear trend in the properties evaluated. By DMTA, an increase in storage and loss modulus was found, as well as a shift to higher values for higher glass loading and overall fiber volume. It was also noticed an increase in the efficiency of the filler and in the calculated activation energy. The fiber length did not significantly change the results observed in all analysis carried out in this work. The calculated adhesion factor increased for higher glass loadings, meaning that the equation may not be applied for this system and there are other factors, besides adhesion influencing energy dissipation of the composites
    corecore