48 research outputs found

    Muscle-specific ablation of glucose transporter 1 (GLUT1) does not impair basal or overload-stimulated skeletal muscle glucose uptake

    Get PDF
    Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle

    Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia

    Get PDF
    Mutations within subunits of the tRNA splicing endonuclease complex (TSEN) are associated with pontocerebellar hypoplasia (PCH). Here the authors show that tRNA intron excision is catalyzed by tetrameric TSEN assembled from inactive heterodimers, and provide evidence that modulation of TSEN stability may contribute to PCH phenotypes.Introns of human transfer RNA precursors (pre-tRNAs) are excised by the tRNA splicing endonuclease TSEN in complex with the RNA kinase CLP1. Mutations in TSEN/CLP1 occur in patients with pontocerebellar hypoplasia (PCH), however, their role in the disease is unclear. Here, we show that intron excision is catalyzed by tetrameric TSEN assembled from inactive heterodimers independently of CLP1. Splice site recognition involves the mature domain and the anticodon-intron base pair of pre-tRNAs. The 2.1-angstrom resolution X-ray crystal structure of a TSEN15-34 heterodimer and differential scanning fluorimetry analyses show that PCH mutations cause thermal destabilization. While endonuclease activity in recombinant mutant TSEN is unaltered, we observe assembly defects and reduced pre-tRNA cleavage activity resulting in an imbalanced pre-tRNA pool in PCH patient-derived fibroblasts. Our work defines the molecular principles of intron excision in humans and provides evidence that modulation of TSEN stability may contribute to PCH phenotypes.Genetics of disease, diagnosis and treatmen

    Differential roles of factors IX and XI in murine placenta and hemostasis under conditions of low tissue factor

    Get PDF
    The intrinsic tenase complex (FIXa-FVIIIa) of the intrinsic coagulation pathway and, to a lesser extent, thrombin-mediated activation of FXI, are necessary to amplify tissue factor (TF)-FVIIa-initiated thrombin generation. In this study, we determined the contribution of murine FIX and FXI to TF-dependent thrombin generation in vitro. We further investigated TF-dependent FIX activation in mice and the contribution of this pathway to hemostasis. Thrombin generation was decreased in FIX- but not in FXI-deficient mouse plasma. Furthermore, injection of TF increased levels of FIXa-antithrombin complexes in both wildtype and FXI-/- mice. Genetic studies were used to determine the effect of complete deficiencies of either FIX or FXI on the survival of mice expressing low levels of TF. Low-TF; FIX2/y male mice were born at the expected frequency, but none survived to wean. In contrast, low-TF;FXI-/- mice were generated at the expected frequency at wean and had a 6-month survival equivalent to that of low-TF mice. Surprisingly, a deficiency of FXI, but not FIX, exacerbated the size of blood pools in low-TF placentas and led to acute hemorrhage and death of some pregnant dams. Our data indicate that FIX, but not FXI, is essential for survival of low-TF mice after birth. This finding suggests that TF-FVIIa-mediated activation of FIX plays a critical role in murine hemostasis. In contrast, FXI deficiency, but not FIX deficiency, exacerbated blood pooling in low-TF placentas, indicating a tissue-specific requirement for FXI in the murine placenta under conditions of low TF

    Overexpression of SIRT1 Protects Pancreatic β-Cells Against Cytokine Toxicity by Suppressing the Nuclear Factor-κB Signaling Pathway

    Get PDF
    OBJECTIVE—SIRT1, a class III histone/protein deacetylase, is known to interfere with the nuclear factor-κB (NF-κB) signaling pathway and thereby has an anti-inflammatory function. Because of the central role of NF-κB in cytokine-mediated pancreatic β-cell damage, we postulated that SIRT1 might work in pancreatic β-cell damage models

    Activation of Cytotoxic and Regulatory Functions of NK Cells by Sindbis Viral Vectors

    Get PDF
    Oncolytic viruses (OVs) represent a relatively novel anti-cancer modality. Like other new cancer treatments, effective OV therapy will likely require combination with conventional treatments. In order to design combinatorial treatments that work well together, a greater scrutiny of the mechanisms behind the individual treatments is needed. Sindbis virus (SV) based vectors have previously been shown to target and kill tumors in xenograft, syngeneic, and spontaneous mouse models. However, the effect of SV treatment on the immune system has not yet been studied. Here we used a variety of methods, including FACS analysis, cytotoxicity assays, cell depletion, imaging of tumor growth, cytokine blockade, and survival experiments, to study how SV therapy affects Natural Killer (NK) cell function in SCID mice bearing human ovarian carcinoma tumors. Surprisingly, we found that SV anti-cancer efficacy is largely NK cell-dependent. Furthermore, the enhanced therapeutic effect previously observed from Sin/IL12 vectors, which carry the gene for interleukin 12, is also NK cell dependent, but works through a separate IFNγ-dependent mechanism, which also induces the activation of peritoneal macrophages. These results demonstrate the multimodular nature of SV therapy, and open up new possibilities for potential synergistic or additive combinatorial therapies with other treatments

    Design, Synthesis, and Pharmacological Characterization of a Neutral, Non Prodrug Thrombin Inhibitor with Good Oral Pharmacokinetics

    No full text
    Despite extensive research on small molecule thrombin inhibitors for oral application in the past decades, only a single double prodrug with very modest oral bioavailability has reached human therapy as a marketed drug. We have undertaken major efforts to identify neutral, non prodrug inhibitors. Using a holistic analysis of all available internal data, we were able to build computational models and apply these for the selection of a lead series with the highest possibility of achieving oral bioavailability. In our design, we relied on protein structure knowledge to address potency and identified a small window of favorable physicochemical properties to balance absorption and metabolic stability. Protein structure information on the pregnane X receptor helped in overcoming a persistent cytochrome P450 3A4 induction problem. The selected compound series was optimized to a highly potent, neutral, non prodrug thrombin inhibitor by designing, synthesizing, and testing derivatives. The resulting optimized compound, BAY1217224, has reached first clinical trials, which have confirmed the desired pharmacokinetic propertie

    The circulating proteome and brain health: Mendelian randomisation and cross-sectional analyses

    No full text
    This is the final version. Available on open access from Springer Nature via the DOI in this recordData availability: The terms of consent for PURE participants preclude the sharing of individual-level data. Individual level data is available through collaboration with PURE researchers (https://www.phri.ca/research/pure/). Summary-statistics for the analyses presented here are available in the supplementary materials. According to the terms of consent for GS participants, applications for individual-level data must be reviewed by the GS Access Committee ([email protected]). Complete summary statistics are available in the supplementary materials for the protein-DSST score associations assessed in this study.Code availability: The code used to generate the results in this study is available on reasonable request from the corresponding author.Decline in cognitive function is the most feared aspect of ageing. Poorer midlife cognitive function is associated with increased dementia and stroke risk. The mechanisms underlying variation in cognitive function are uncertain. Here, we assessed associations between 1160 proteins’ plasma levels and two measures of cognitive function, the digit symbol substitution test (DSST) and the Montreal Cognitive Assessment in 1198 PURE-MIND participants. We identified five DSST performance-associated proteins (NCAN, BCAN, CA14, MOG, CDCP1), with NCAN and CDCP1 showing replicated association in an independent cohort, GS (N = 1053). MRI-assessed structural brain phenotypes partially mediated (8–19%) associations between NCAN, BCAN, and MOG, and DSST performance. Mendelian randomisation analyses suggested higher CA14 levels might cause larger hippocampal volume and increased stroke risk, whilst higher CDCP1 levels might increase intracranial aneurysm risk. Our findings highlight candidates for further study and the potential for drug repurposing to reduce the risk of stroke and cognitive decline

    Plasma protein signatures for high on-treatment platelet reactivity to aspirin and clopidogrel in peripheral artery disease

    No full text
    Background: A significant proportion of patients with peripheral artery disease (PAD) displays a poor response to aspirin and/or the platelet P2Y12 receptor antagonist clopidogrel. This phenomenon is reflected by high on-treatment platelet reactivity (HTPR) in platelet function assays in vitro and is associated with an increased risk of adverse cardiovascular events. Objective: This study aimed to elucidate specific plasma protein signatures associated with HTPR to aspirin and clopidogrel in PAD patients. Methods and results: Based on targeted plasma proteomics, 184 proteins from two cardiovascular Olink panels were measured in 105 PAD patients. VerifyNow ASPI- and P2Y12-test values were transformed to a continuous variable representing HTPR as a spectrum instead of cut-off level-defined HTPR. Using the Boruta random forest algorithm, the importance of 3 plasma proteins for HTPR in the aspirin, six in clopidogrel and 10 in the pooled group (clopidogrel or aspirin) was confirmed. Network analysis demonstrated clusters with CD84, SLAMF7, IL1RN and THBD for clopidogrel and with F2R, SELPLG, HAVCR1, THBD, PECAM1, TNFRSF10B, MERTK and ADM for the pooled group. F2R, TNFRSF10B and ADM were higher expressed in Fontaine III patients compared to Fontaine II, suggesting their relation with PAD severity. Conclusions: A plasma protein signature, including eight targets involved in proatherogenic dysfunction of blood cell-vasculature interaction, coagulation and cell death, is associated with HTPR (aspirin and/or clopidogrel) in PAD. This may serve as important systems-based determinants of poor platelet responsiveness to aspirin and/or clopidogrel in PAD and other cardiovascular diseases and may contribute to identify novel treatment strategies
    corecore