745 research outputs found

    Recommendations to Practitioners for Adolescent Clients with a History of Trauma

    Get PDF
    Children and adolescents who are exposed to traumatic events are at higher risk for developing mental health disorders over their lifetime. Therefore, this paper explores the effects of abuse and trauma in children and youth and aims to promote implementation of trauma-informed care principles with practitioners who work with at-risk youth. Specifically, this paper identifies the barriers that affect clients with a history of trauma and provides recommendations such as Positive Youth Development, Mentoring, and Day Treatment to practitioners who work with this population. In addition, the impact that day treatment programs have on degree of impairment and functioning for children and adolescents will be discussed. Multiple services such as utilization of mentoring programs and aftercare recommendations can be effective and influence a youth’s outcome in areas of academic, emotional and behavioral problems. Barriers to treatment integration of trauma-informed care practices for practitioners who work with at-risk youth will also be discussed

    Scintillation proximity assay (SPA) as a new approach to determine a ligand's kinetic profile. A case in point for the adenosine A1 receptor.

    Get PDF
    Scintillation proximity assay (SPA) is a radio-isotopic technology format used to measure a wide range of biological interactions, including drug-target binding affinity studies. The assay is homogeneous in nature, as it relies on a "mix and measure" format. It does not involve a filtration step to separate bound from free ligand as is the case in a traditional receptor-binding assay. For G protein-coupled receptors (GPCRs), it has been shown that optimal binding kinetics, next to a high affinity of a ligand, can result in more desirable pharmacological profiles. However, traditional techniques to assess kinetic parameters tend to be cumbersome and laborious. We thus aimed to evaluate whether SPA can be an alternative platform for real-time receptor-binding kinetic measurements on GPCRs. To do so, we first validated the SPA technology for equilibrium binding studies on a prototypic class A GPCR, the human adenosine A1 receptor (hA1R). Differently to classic kinetic studies, the SPA technology allowed us to study binding kinetic processes almost real time, which is impossible in the filtration assay. To demonstrate the reliability of this technology for kinetic purposes, we performed the so-called competition association experiments. The association and dissociation rate constants (k on and k off) of unlabeled hA1R ligands were reliably and quickly determined and agreed very well with the same parameters from a traditional filtration assay performed simultaneously. In conclusion, SPA is a very promising technique to determine the kinetic profile of the drug-target interaction. Its robustness and potential for high-throughput may render this technology a preferred choice for further kinetic studies

    Microbubble shape oscillations excited through ultrasonic parametric driving\ud

    Get PDF
    An air bubble driven by ultrasound can become shape-unstable through a parametric instability. We report time-resolved optical observations of shape oscillations (mode n=2 to 6) of micron-sized single air bubbles. The observed mode number n was found to be linearly related to the ambient radius of the bubble. Above the critical driving pressure threshold for shape oscillations, which is minimal at the resonance of the volumetric radial mode, the observed mode number n is independent of the forcing pressure amplitude. The microbubble shape oscillations were also analyzed numerically by introducing a small nonspherical linear perturbation to a Rayleigh-Plesset-type equation, capturing the experimental observations in detail.\ud \u

    An Improved Approach for Measurement of Coupled Heat and Water Transfer in Soil Cells

    Get PDF
    Laboratory experiments on coupled heat and water transfer in soil have been limited in their measurement approaches. Inadequate temperature control creates undesired two-dimensional distributions of both temperature and moisture. Destructive sampling to determine soil volumetric water content (θ) prevents measurement of transient θ distributions and provides no direct information on soil thermal properties. The objectives of this work were to: (i) develop an instrumented closed soil cell that provides one-dimensional conditions and permits in situ measurement of temperature, θ, and thermal conductivity (λ) under transient boundary conditions, and (ii) test this cell in a series of experiments using four soil type–initial θ combinations and 10 transient boundary conditions. Experiments were conducted using soil-insulated cells instrumented with thermo-time domain reflectometry (T-TDR) sensors. Temperature distributions measured in the experiments show nonlinearity, which is consistent with nonuniform thermal properties provided by thermal moisture distribution but differs from previous studies lacking one-dimensional temperature control. The T-TDR measurements of θ based on dielectric permittivity, volumetric heat capacity, and change in volumetric heat capacity agreed well with post-experiment sampling, providing r 2 values of 0.87, 0.93, and 0.95, respectively. Measurements of θ and λ were also consistent with the shapes of the observed temperature distributions. Techniques implemented in these experiments allowed observation of transient temperature, θ, and λ distributions on the same soil sample for 10 sequentially imposed boundary conditions, including periods of rapid redistribution. This work demonstrates that, through improved measurement techniques, the study of heat and water transfer processes can be expanded in ways previously unavailable

    Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics

    Get PDF
    Soil-water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth and location of the evaporation zone within soil. Three-needle heat-pulse sensors were used to monitor soil heat capacity, thermal conductivity, and temperature below a bare soil surface in central Iowa during natural wetting/drying cycles. Soil heat flux and changes in heat storage were calculated from these data to obtain a balance of sensible heat components. The residual from this balance, attributed to latent heat from water vaporization, provides an estimate of in situ soil-water evaporation. As the soil dried following rainfall, results show divergence in the soil sensible heat flux with depth. Divergence in the heat flux indicates the location of a heat sink associated with soil-water evaporation. Evaporation estimates from the sensible heat balance provide depth and time patterns consistent with observed soil-water depletion patterns. Immediately after rainfall, evaporation occurred near the soil surface. Within 6 days after rainfall, the evaporation zone proceeded \u3e 13 mm into the soil profile. Evaporation rates at the 3-mm depth reached peak values \u3e 0.25 mm h−1. Evaporation occurred simultaneously at multiple measured depth increments, but with time lag between peak evaporation rates for depths deeper below the soil surface. Implementation of finescale measurement techniques for the soil sensible heat balance provides a new opportunity to improve understanding of soil-water evaporation

    Sensible Heat Balance Measurements of Soil Water Evaporation beneath a Maize Canopy

    Get PDF
    Soil water evaporation is an important component of the water budget in cropped fields; few methods are available for continuous and independent measurement. A sensible heat balance (SHB) approach has been demonstrated for continuously determining soil water evaporation under bare surface conditions. Applicability of SHB measurements beneath a crop canopy cover has not been evaluated. We tested SHB using heat-pulse sensors to estimate evaporation beneath a full maize (Zea mays L.) canopy. We also implemented a modified SHB approach incorporating below-canopy net radiation, which extended the range of conditions under which SHB is applicable. Evaporation was measured at three positions: row (R), interrow (I), and interrow with roots excluded (IE). Evaporation rates were generally small, averaging −1 across all dates, positions, and measurement methods during the drying period. The SHB evaporation estimates varied among R, I, and IE, with cumulative totals of 4.4, 7.4, and 7.9 mm, respectively, during a 12-d drying period. Lower soil water contents from plant water uptake reduced evaporation rates at R more appreciably with time than at the other positions; I and IE provided similar evaporation patterns. The SHB evaporation estimates at R and I were compared with microlysimeter data on 8 d. Correlation between approaches was modest (r2 = 0.61) but significant (p \u3c 0.001) when compared separately at R and I positions. Correlation was improved (r2 = 0.81) when evaporation estimates were combined across positions, with differences between SHB and microlysimeters typically within the range of values obtained from microlysimeter replicates. Overall, the results suggest good potential for using SHB and modified SHB approaches to determine soil water evaporation in a cropped field. The SHB approach allowed continuous daily estimates of evaporation, separate from evapotranspiration and without destructive sampling

    A covalent antagonist for the human adenosine A(2A) receptor

    Get PDF
    The structure of the human A(2A) adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA(2A) receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A(2A)-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A(2A) receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine

    Bare Soil Carbon Dioxide Fluxes with Time and Depth Determined by High-Resolution Gradient-Based Measurements and Surface Chambers

    Get PDF
    Soil CO2 production rates and fluxes vary with time and depth. The shallow near-surface soil layer is important for myriad soil processes, yet knowledge of dynamic CO2 concentrations and fluxes in this complex zone is limited. We used a concentration gradient method (CGM) to determine CO2 production and effluxes with depth in shallow layers of a bare soil. The CO2concentration was continuously measured at 13 depths in the 0- to 200-mm soil layer. For an 11-d period, 2% of the soil CO2 was produced below a depth of 175 mm, 8% was produced in the 50- to 175-mm soil layer, and 90% was produced in the 0- to 50-mm soil layer. Soil CO2concentration showed similar diurnal patterns with temperature in deeper soil layers and out-of-phase diurnal patterns in surface soil layers. Soil CO2 flux from most of the soil layers can be described by an exponential function of soil temperature, with temperature sensitivity (Q10) ranging from 1.40 to 2.00 (1.62 ± 0.17). The temperature-normalized CO2 fluxes are related to soil water content with a positive linear relationship in surface soil layers and a negative relationship in deep soil layers. The CO2 fluxes from CGM and chamber methods had good agreement at multiple time scales, which showed that the CGM method was able to estimate near-surface soil CO2 fluxes and production. The contrasting patterns between surface and deep layers of soil CO2 concentration and fluxes suggest the necessity of intensive CO2concentration measurements in the surface soil layer for accurate determination of soil-atmosphere CO2 flux when using the CGM
    • …
    corecore