2,842 research outputs found

    Shell Structures and Chaos in Deformed Nuclei and Large Metallic Clusters

    Full text link
    A reflection-asymmetric deformed oscillator potential is analysed from the classical and quantum mechanical point of view. The connection between occurrence of shell structures and classical periodic orbits is studied using the ''removal of resonances method'' in a classical analysis. In this approximation, the effective single particle potential becomes separable and the frequencies of the classical trajectories are easily determined. It turns out that the winding numbers calculated in this way are in good agreement with the ones found from the corresponding quantum mechanical spectrum using the particle number dependence of the fluctuating part of the total energy. When the octupole term is switched on it is found that prolate shapes are stable against chaos whereas spherical and oblate cases become chaotic. An attempt is made to explain this difference in the quantum mechanical context by looking at the distribution of exceptional points which results from the matrix structure of the respective Hamiltonians. In a similar way we analyse the modified Nilsson model and discuss its consequences for nuclei and metallic clusters.Comment: to appear in Physica Scripta., CNLS-94-02, a talk given at the Nobel sponsored conference SELMA 94 "New Nuclear Phenomena in the Vicinity of Closed Shell" (Stockholm and Uppsala, 29 Aug.- 3 Sept. 1994

    Self-dual Spectral Singularities and Coherent Perfect Absorbing Lasers without PT-symmetry

    Full text link
    A PT-symmetric optically active medium that lases at the threshold gain also acts as a complete perfect absorber at the laser wavelength. This is because spectral singularities of PT-symmetric complex potentials are always accompanied by their time-reversal dual. We investigate the significance of PT-symmetry for the appearance of these self-dual spectral singularities. In particular, using a realistic optical system we show that self-dual spectral singularities can emerge also for non-PT-symmetric configurations. This signifies the existence of non-PT-symmetric CPA-lasers.Comment: 11 pages, 3 figures, 1 table, accepted for publication in J. Phys.

    Collectivity, Phase Transitions and Exceptional Points in Open Quantum Systems

    Full text link
    Phase transitions in open quantum systems, which are associated with the formation of collective states of a large width and of trapped states with rather small widths, are related to exceptional points of the Hamiltonian. Exceptional points are the singularities of the spectrum and eigenfunctions, when they are considered as functions of a coupling parameter. In the present paper this parameter is the coupling strength to the continuum. It is shown that the positions of the exceptional points (their accumulation point in the thermodynamical limit) depend on the particular type and energy dependence of the coupling to the continuum in the same way as the transition point of the corresponding phase transition.Comment: 22 pages, 4 figure

    Resonance scattering and singularities of the scattering function

    Full text link
    Recent studies of transport phenomena with complex potentials are explained by generic square root singularities of spectrum and eigenfunctions of non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that such singularities produce a significant effect upon the pole behaviour of the scattering matrix, and more significantly upon the associated residues. This mechanism explains why by proper choice of the system parameters the resonance cross section is increased drastically in one channel and suppressed in the other channel.Comment: 4 pages, 3 figure

    Deformation of Quantum Dots in the Coulomb Blockade Regime

    Full text link
    We extend the theory of Coulomb blockade oscillations to quantum dots which are deformed by the confining potential. We show that shape deformations can generate sequences of conductance resonances which carry the same internal wavefunction. This fact may cause strong correlations of neighboring conductance peaks. We demonstrate the relevance of our results for the interpretation of recent experiments on semiconductor quantum dots.Comment: 4 pages, Revtex, 4 postscript figure

    Chaos in Axially Symmetric Potentials with Octupole Deformation

    Full text link
    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is srongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.Comment: 6 pages LaTex plus 4 figures available by contacting the authors directly, published in PHYS.REV.LETT. 72(1994) 235

    Statistical Fluctuations of Electromagnetic Transition Intensities in pf-Shell Nuclei

    Get PDF
    We study the fluctuation properties of E2 and M1 transition intensities among T=0,1 states of A = 60 nuclei in the framework of the interacting shell model, using a realistic effective interaction for pf-shell nuclei with a Ni56 as a core. It is found that the B(E2) distributions are well described by the Gaussian orthogonal ensemble of random matrices (Porter-Thomas distribution) independently of the isobaric quantum number T_z. However, the statistics of the B(M1) transitions is sensitive to T_z: T_z=1 nuclei exhibit a Porter-Thomas distribution, while a significant deviation from the GOE statistics is observed for self-conjugate nuclei (T_z=0).Comment: 8 pages, latex, 3 figures (ps format

    Orbital Magnetism in Small Quantum Dots with Closed Shells

    Full text link
    It is found that various kind of shell structure which occurs at specific values of the magnetic field leads to the disappearance of the orbital magnetization for particular magic numbers of small quantum dots with an electron number A<30A < 30.Comment: 4 pages, latex file, four figures as postscript files, to appear at JETP Letters, December 199

    IV-VI resonant cavity enhanced photodetectors for the midinfrared

    Full text link
    A resonant-cavity enhanced detector operating in the mid-infrared at a wavelength around 3.6 micron is demonstrated. The device is based on a narrow-gap lead salt heterostructure grown by molecular beam epitaxy. Below 140 K, the photovoltage clearly shows a single narrow cavity resonance, with a relative line width of only 2 % at 80 K.Comment: 2 figure
    corecore